Suppr超能文献

CanAssist乳腺免疫组化生物标志物在自动化平台上的验证及其在组织芯片中的应用

Validation of CanAssist Breast immunohistochemistry biomarkers on an automated platform and its applicability in tissue microarray.

作者信息

Serkad Chandra Prakash V, Attuluri Arun Kumar, Basavaraj Chetana, Adinarayan Manjula, Krishnamoorthy Naveen, Ananthamurthy Savitha B, Mallikarjuna Siraganahalli E, Bakre Manjiri M

机构信息

OncoStem Diagnostics Private Limited Bangalore 560027, Karnataka, India.

出版信息

Int J Clin Exp Pathol. 2021 Oct 15;14(10):1013-1021. eCollection 2021.

Abstract

CanAssist Breast (CAB) is a prognostic test for early-stage hormone receptor-positive invasive breast cancer. The test involves performing immunohistochemical (IHC) analysis for five biomarkers, namely CD44, ABCC4, ABCC11, N-cadherin, and pan-cadherin. In addition to IHC grading information, three clinical features, i.e., tumor size, grade, and lymph node status, serve as input into the machine learning-based algorithm to generate the CAB risk score. CAB was developed and initially validated using manual IHC. This study's objectives included: i) automate CAB IHC on an autostainer and establish its performance equivalence with manual IHC ii) validate CAB test using samples in Tissue MicroArray (TMA) format. IHC for CAB biomarkers was standardized on Ventana BenchMark XT autostainer. Two IHC methods were compared for IHC gradings and corresponding CAB risk scores/risk categories. A concordance analysis was done using MedCalc software. The manual and automated IHC staining methods exhibited a high level of concordance on IHC gradings for 40 cases with an Intra-class Correlation Coefficient (ICC) of >0.85 for 4 of 5 biomarkers. 100% concordance was achieved in risk categorization (low- or high-risk), with very good agreement between the risk scores demonstrated by a kappa statistic of 0.83. TMA versus whole tissue section concordance was analyzed using 45 samples on an autostainer, and the data showed 92% concordance in terms of risk category. The results confirm the equivalence between manual and automated staining methods and demonstrate the utility of TMA as an acceptable format for CanAssist Breast testing.

摘要

CanAssist乳腺检测(CAB)是一种针对早期激素受体阳性浸润性乳腺癌的预后检测方法。该检测涉及对五种生物标志物进行免疫组织化学(IHC)分析,即CD44、ABCC4、ABCC11、N-钙黏蛋白和泛钙黏蛋白。除了IHC分级信息外,肿瘤大小、分级和淋巴结状态这三个临床特征作为基于机器学习的算法的输入,以生成CAB风险评分。CAB最初是使用手动IHC开发并验证的。本研究的目标包括:i)在自动染色仪上实现CAB IHC自动化,并确定其与手动IHC的性能等效性;ii)使用组织微阵列(TMA)格式的样本验证CAB检测。CAB生物标志物的IHC在Ventana BenchMark XT自动染色仪上进行了标准化。比较了两种IHC方法的IHC分级以及相应的CAB风险评分/风险类别。使用MedCalc软件进行了一致性分析。对于40例病例,手动和自动IHC染色方法在IHC分级上表现出高度一致性,5种生物标志物中有4种的组内相关系数(ICC)>0.85。在风险分类(低风险或高风险)方面实现了100%的一致性,kappa统计量为0.83,表明风险评分之间具有很好的一致性。在自动染色仪上使用45个样本分析了TMA与全组织切片的一致性,数据显示在风险类别方面一致性为92%。结果证实了手动和自动染色方法之间的等效性,并证明了TMA作为CanAssist乳腺检测可接受格式的实用性。

相似文献

引用本文的文献

本文引用的文献

3
An Introduction to the Performance of Immunohistochemistry.免疫组织化学的性能介绍
Methods Mol Biol. 2019;1897:289-298. doi: 10.1007/978-1-4939-8935-5_25.
5
Basics of immunohistochemistry.免疫组织化学基础
J Invest Dermatol. 2015 Mar;135(3):1-4. doi: 10.1038/jid.2014.541.
6
Overview of automated immunohistochemistry.自动免疫组织化学概述
Arch Pathol Lab Med. 2014 Dec;138(12):1578-82. doi: 10.5858/arpa.2014-0083-RA.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验