Li Yibo, Pei Jianfeng, Lai Luhua
Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University Beijing 100871 China
Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University Beijing 100871 China
Chem Sci. 2021 Sep 9;12(41):13664-13675. doi: 10.1039/d1sc04444c. eCollection 2021 Oct 27.
Deep generative models are attracting much attention in the field of molecule design. Compared to traditional methods, deep generative models can be trained in a fully data-driven way with little requirement for expert knowledge. Although many models have been developed to generate 1D and 2D molecular structures, 3D molecule generation is less explored, and the direct design of drug-like molecules inside target binding sites remains challenging. In this work, we introduce DeepLigBuilder, a novel deep learning-based method for drug design that generates 3D molecular structures in the binding sites of target proteins. We first developed Ligand Neural Network (L-Net), a novel graph generative model for the end-to-end design of chemically and conformationally valid 3D molecules with high drug-likeness. Then, we combined L-Net with Monte Carlo tree search to perform structure-based drug design tasks. In the case study of inhibitor design for the main protease of SARS-CoV-2, DeepLigBuilder suggested a list of drug-like compounds with novel chemical structures, high predicted affinity, and similar binding features to those of known inhibitors. The current version of L-Net was trained on drug-like compounds from ChEMBL, which could be easily extended to other molecular datasets with desired properties based on users' demands and applied in functional molecule generation. Merging deep generative models with atomic-level interaction evaluation, DeepLigBuilder provides a state-of-the-art model for structure-based drug design and lead optimization.
深度生成模型在分子设计领域正备受关注。与传统方法相比,深度生成模型可以完全以数据驱动的方式进行训练,对专家知识的需求很少。尽管已经开发了许多模型来生成一维和二维分子结构,但三维分子生成的探索较少,并且在靶标结合位点内直接设计类药物分子仍然具有挑战性。在这项工作中,我们介绍了DeepLigBuilder,这是一种基于深度学习的新型药物设计方法,可在靶标蛋白的结合位点生成三维分子结构。我们首先开发了配体神经网络(L-Net),这是一种新型的图生成模型,用于对具有高类药性的化学和构象有效的三维分子进行端到端设计。然后,我们将L-Net与蒙特卡罗树搜索相结合,以执行基于结构的药物设计任务。在针对严重急性呼吸综合征冠状病毒2主要蛋白酶的抑制剂设计案例研究中,DeepLigBuilder提出了一系列具有新颖化学结构、高预测亲和力且与已知抑制剂具有相似结合特征的类药物化合物。当前版本的L-Net是在来自ChEMBL的类药物化合物上进行训练的,可以根据用户需求轻松扩展到具有所需特性的其他分子数据集,并应用于功能分子生成。DeepLigBuilder将深度生成模型与原子级相互作用评估相结合,为基于结构的药物设计和先导优化提供了一个最先进的模型。
Chem Sci. 2021-9-9
J Chem Inf Model. 2022-5-23
Brief Bioinform. 2022-7-18
J Cheminform. 2018-7-24
J Chem Inf Model. 2022-7-25
J Chem Inf Model. 2021-11-22
Chem Sci. 2023-7-19
J Chem Inf Model. 2025-8-11
Brief Bioinform. 2025-5-1
Chem Sci. 2025-5-29
J Med Chem. 2025-5-22
Brief Bioinform. 2025-3-4
Commun Biol. 2025-3-12
Chem Sci. 2019-12-3
J Cheminform. 2020-5-29
Front Pharmacol. 2020-12-18
Nucleic Acids Res. 2021-1-8
Nature. 2020-4-9
Front Chem. 2020-2-28