文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用3D深度生成模型的基于结构的药物设计。

Structure-based drug design using 3D deep generative models.

作者信息

Li Yibo, Pei Jianfeng, Lai Luhua

机构信息

Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University Beijing 100871 China

Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University Beijing 100871 China

出版信息

Chem Sci. 2021 Sep 9;12(41):13664-13675. doi: 10.1039/d1sc04444c. eCollection 2021 Oct 27.


DOI:10.1039/d1sc04444c
PMID:34760151
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8549794/
Abstract

Deep generative models are attracting much attention in the field of molecule design. Compared to traditional methods, deep generative models can be trained in a fully data-driven way with little requirement for expert knowledge. Although many models have been developed to generate 1D and 2D molecular structures, 3D molecule generation is less explored, and the direct design of drug-like molecules inside target binding sites remains challenging. In this work, we introduce DeepLigBuilder, a novel deep learning-based method for drug design that generates 3D molecular structures in the binding sites of target proteins. We first developed Ligand Neural Network (L-Net), a novel graph generative model for the end-to-end design of chemically and conformationally valid 3D molecules with high drug-likeness. Then, we combined L-Net with Monte Carlo tree search to perform structure-based drug design tasks. In the case study of inhibitor design for the main protease of SARS-CoV-2, DeepLigBuilder suggested a list of drug-like compounds with novel chemical structures, high predicted affinity, and similar binding features to those of known inhibitors. The current version of L-Net was trained on drug-like compounds from ChEMBL, which could be easily extended to other molecular datasets with desired properties based on users' demands and applied in functional molecule generation. Merging deep generative models with atomic-level interaction evaluation, DeepLigBuilder provides a state-of-the-art model for structure-based drug design and lead optimization.

摘要

深度生成模型在分子设计领域正备受关注。与传统方法相比,深度生成模型可以完全以数据驱动的方式进行训练,对专家知识的需求很少。尽管已经开发了许多模型来生成一维和二维分子结构,但三维分子生成的探索较少,并且在靶标结合位点内直接设计类药物分子仍然具有挑战性。在这项工作中,我们介绍了DeepLigBuilder,这是一种基于深度学习的新型药物设计方法,可在靶标蛋白的结合位点生成三维分子结构。我们首先开发了配体神经网络(L-Net),这是一种新型的图生成模型,用于对具有高类药性的化学和构象有效的三维分子进行端到端设计。然后,我们将L-Net与蒙特卡罗树搜索相结合,以执行基于结构的药物设计任务。在针对严重急性呼吸综合征冠状病毒2主要蛋白酶的抑制剂设计案例研究中,DeepLigBuilder提出了一系列具有新颖化学结构、高预测亲和力且与已知抑制剂具有相似结合特征的类药物化合物。当前版本的L-Net是在来自ChEMBL的类药物化合物上进行训练的,可以根据用户需求轻松扩展到具有所需特性的其他分子数据集,并应用于功能分子生成。DeepLigBuilder将深度生成模型与原子级相互作用评估相结合,为基于结构的药物设计和先导优化提供了一个最先进的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d6/8549794/588eee0a279c/d1sc04444c-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d6/8549794/f5854e0c49c8/d1sc04444c-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d6/8549794/44c8a2174304/d1sc04444c-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d6/8549794/fefc0623a48c/d1sc04444c-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d6/8549794/0a9a5db8db17/d1sc04444c-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d6/8549794/588eee0a279c/d1sc04444c-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d6/8549794/f5854e0c49c8/d1sc04444c-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d6/8549794/44c8a2174304/d1sc04444c-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d6/8549794/fefc0623a48c/d1sc04444c-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d6/8549794/0a9a5db8db17/d1sc04444c-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d6/8549794/588eee0a279c/d1sc04444c-f5.jpg

相似文献

[1]
Structure-based drug design using 3D deep generative models.

Chem Sci. 2021-9-9

[2]
Advances and Challenges in De Novo Drug Design Using Three-Dimensional Deep Generative Models.

J Chem Inf Model. 2022-5-23

[3]
De novo molecular design with deep molecular generative models for PPI inhibitors.

Brief Bioinform. 2022-7-18

[4]
DNMG: Deep molecular generative model by fusion of 3D information for de novo drug design.

Methods. 2023-3

[5]
Multi-objective de novo drug design with conditional graph generative model.

J Cheminform. 2018-7-24

[6]
Molecule Design Using Molecular Generative Models Constrained by Ligand-Protein Interactions.

J Chem Inf Model. 2022-7-25

[7]
Comparison of structure- and ligand-based scoring functions for deep generative models: a GPCR case study.

J Cheminform. 2021-5-13

[8]
LOGICS: Learning optimal generative distribution for designing de novo chemical structures.

J Cheminform. 2023-9-7

[9]
Generative Deep Learning for Targeted Compound Design.

J Chem Inf Model. 2021-11-22

[10]
An equivariant generative framework for molecular graph-structure Co-design.

Chem Sci. 2023-7-19

引用本文的文献

[1]
Generative artificial intelligence based models optimization towards molecule design enhancement.

J Cheminform. 2025-8-4

[2]
Benchmarking 3D Structure-Based Molecule Generators.

J Chem Inf Model. 2025-8-11

[3]
Rag2Mol: structure-based drug design based on retrieval augmented generation.

Brief Bioinform. 2025-5-1

[4]
Guided multi-objective generative AI to enhance structure-based drug design.

Chem Sci. 2025-5-29

[5]
Moldrug algorithm for an automated ligand binding site exploration by 3D aware molecular enumerations.

J Cheminform. 2025-5-26

[6]
Sculpting molecules in text-3D space: a flexible substructure aware framework for text-oriented molecular optimization.

BMC Bioinformatics. 2025-5-7

[7]
AI-Driven Design and Development of Nontoxic DYRK1A Inhibitors.

J Med Chem. 2025-5-22

[8]
MolEM: a unified generative framework for molecular graphs and sequential orders.

Brief Bioinform. 2025-3-4

[9]
A structure-based framework for selective inhibitor design and optimization.

Commun Biol. 2025-3-12

[10]
Accelerating discovery of bioactive ligands with pharmacophore-informed generative models.

Nat Commun. 2025-3-10

本文引用的文献

[1]
Beyond generative models: superfast traversal, optimization, novelty, exploration and discovery (STONED) algorithm for molecules using SELFIES.

Chem Sci. 2021-4-20

[2]
Scaffold-based molecular design with a graph generative model.

Chem Sci. 2019-12-3

[3]
Potent Noncovalent Inhibitors of the Main Protease of SARS-CoV-2 from Molecular Sculpting of the Drug Perampanel Guided by Free Energy Perturbation Calculations.

ACS Cent Sci. 2021-3-24

[4]
SARS-CoV-2 M inhibitors with antiviral activity in a transgenic mouse model.

Science. 2021-3-26

[5]
SMILES-based deep generative scaffold decorator for de-novo drug design.

J Cheminform. 2020-5-29

[6]
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models.

Front Pharmacol. 2020-12-18

[7]
PubChem in 2021: new data content and improved web interfaces.

Nucleic Acids Res. 2021-1-8

[8]
Structure of M from SARS-CoV-2 and discovery of its inhibitors.

Nature. 2020-4-9

[9]
LigBuilder V3: A Multi-Target Drug Design Approach.

Front Chem. 2020-2-28

[10]
A new coronavirus associated with human respiratory disease in China.

Nature. 2020-2-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索