Clevert Djork-Arné, Le Tuan, Winter Robin, Montanari Floriane
Machine Learning Research, Bayer AG Berlin Germany
Chem Sci. 2021 Sep 29;12(42):14174-14181. doi: 10.1039/d1sc01839f. eCollection 2021 Nov 3.
The automatic recognition of the molecular content of a molecule's graphical depiction is an extremely challenging problem that remains largely unsolved despite decades of research. Recent advances in neural machine translation enable the auto-encoding of molecular structures in a continuous vector space of fixed size (latent representation) with low reconstruction errors. In this paper, we present a fast and accurate model combining deep convolutional neural network learning from molecule depictions and a pre-trained decoder that translates the latent representation into the SMILES representation of the molecules. This combination allows us to precisely infer a molecular structure from an image. Our rigorous evaluation shows that Img2Mol is able to correctly translate up to 88% of the molecular depictions into their SMILES representation. A pretrained version of Img2Mol is made publicly available on GitHub for non-commercial users.
自动识别分子图形描述中的分子内容是一个极具挑战性的问题,尽管经过数十年研究,该问题在很大程度上仍未得到解决。神经机器翻译的最新进展使得能够在固定大小的连续向量空间(潜在表示)中对分子结构进行自动编码,且重构误差较低。在本文中,我们提出了一种快速且准确的模型,该模型结合了从分子描述中学习的深度卷积神经网络和一个预训练的解码器,该解码器将潜在表示转换为分子的SMILES表示。这种结合使我们能够从图像中精确推断分子结构。我们的严格评估表明,Img2Mol能够将高达88%的分子描述正确转换为其SMILES表示。Img2Mol的预训练版本已在GitHub上向非商业用户公开发布。