Ouyang Hengjie, Liu Wei, Tao Jiajun, Luo Yanghong, Zhang Wanjia, Zhou Jiayu, Geng Shuqi, Zhang Chengpeng
School of Informatics, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China.
Sci Rep. 2024 Jul 25;14(1):17126. doi: 10.1038/s41598-024-67496-7.
Chemical molecular structures are a direct and convenient means of expressing chemical knowledge, playing a vital role in academic communication. In chemistry, hand drawing is a common task for students and researchers. If we can convert hand-drawn chemical molecular structures into machine-readable formats, like SMILES encoding, computers can efficiently process and analyze these structures, significantly enhancing the efficiency of chemical research. Furthermore, with the progress of educational technology, automated grading is gaining popularity. When machines automatically recognize chemical molecular structures and assess the correctness of the drawings, it offers great convenience to teachers. We created ChemReco, a tool designed to identify chemical molecular structures involving three atoms: C, H, and O, providing convenience for chemical researchers. Currently, there are limited studies on hand-drawn chemical molecular structures. Therefore, the primary focus of this paper is constructing datasets. We propose a synthetic image method to rapidly generate images resembling hand-drawn chemical molecular structures, enhancing dataset acquisition efficiency. Regarding model selection, the hand-drawn chemical molecule structural recognition model developed in this article achieves a final recognition accuracy of 96.90%. This model employs the encoder-decoder architecture of EfficientNet + Transformer, demonstrating superior performance compared to other encoder-decoder combinations.
化学分子结构是表达化学知识的一种直接且便捷的方式,在学术交流中起着至关重要的作用。在化学领域,手绘是学生和研究人员的一项常见任务。如果我们能够将手绘的化学分子结构转换为机器可读的格式,如SMILES编码,计算机就能有效地处理和分析这些结构,显著提高化学研究的效率。此外,随着教育技术的进步,自动评分越来越受欢迎。当机器自动识别化学分子结构并评估绘图的正确性时,这给教师带来了极大的便利。我们创建了ChemReco,这是一个旨在识别包含C、H和O三种原子的化学分子结构的工具,为化学研究人员提供了便利。目前,关于手绘化学分子结构的研究有限。因此,本文的主要重点是构建数据集。我们提出了一种合成图像方法,以快速生成类似于手绘化学分子结构的图像,提高数据集获取效率。在模型选择方面,本文开发的手绘化学分子结构识别模型最终识别准确率达到了96.90%。该模型采用了EfficientNet + Transformer的编码器-解码器架构,与其他编码器-解码器组合相比表现出卓越的性能。