Suppr超能文献

常规刚性 2D 基质会引起人诱导多能干细胞来源的心肌细胞单层中的复杂收缩信号。

Conventional rigid 2D substrates cause complex contractile signals in monolayers of human induced pluripotent stem cell-derived cardiomyocytes.

机构信息

Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.

Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, UK.

出版信息

J Physiol. 2022 Feb;600(3):483-507. doi: 10.1113/JP282228. Epub 2021 Dec 7.

Abstract

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) in monolayers interact mechanically via cell-cell and cell-substrate adhesion. Spatiotemporal features of contraction were analysed in hiPSC-CM monolayers (1) attached to glass or plastic (Young's modulus (E) >1 GPa), (2) detached (substrate-free) and (3) attached to a flexible collagen hydrogel (E = 22 kPa). The effects of isoprenaline on contraction were compared between rigid and flexible substrates. To clarify the underlying mechanisms, further gene expression and computational studies were performed. HiPSC-CM monolayers exhibited multiphasic contractile profiles on rigid surfaces in contrast to hydrogels, substrate-free cultures or single cells where only simple twitch-like time-courses were observed. Isoprenaline did not change the contraction profile on either surface, but its lusitropic and chronotropic effects were greater in hydrogel compared with glass. There was no significant difference between stiff and flexible substrates in regard to expression of the stress-activated genes NPPA and NPPB. A computational model of cell clusters demonstrated similar complex contractile interactions on stiff substrates as a consequence of cell-to-cell functional heterogeneity. Rigid biomaterial surfaces give rise to unphysiological, multiphasic contractions in hiPSC-CM monolayers. Flexible substrates are necessary for normal twitch-like contractility kinetics and interpretation of inotropic interventions. KEY POINTS: Spatiotemporal contractility analysis of human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) monolayers seeded on conventional, rigid surfaces (glass or plastic) revealed the presence of multiphasic contraction patterns across the monolayer with a high variability, despite action potentials recorded in the same areas being identical. These multiphasic patterns are not present in single cells, in detached monolayers or in monolayers seeded on soft substrates such as a hydrogel, where only 'twitch'-like transients are observed. HiPSC-CM monolayers that display a high percentage of regions with multiphasic contraction have significantly increased contractile duration and a decreased lusotropic drug response. There is no indication that the multiphasic contraction patterns are associated with significant activation of the stress-activated NPPA or NPPB signalling pathways. A computational model of cell clusters supports the biological findings that the rigid surface and the differential cell-substrate adhesion underly multiphasic contractile behaviour of hiPSC-CMs.

摘要

人诱导多能干细胞衍生的心肌细胞(hiPSC-CM)在单层中通过细胞-细胞和细胞-基质附着进行机械相互作用。分析了附着在(1)玻璃或塑料(杨氏模量(E)> 1 GPa)、(2)脱离(无基质)和(3)附着在柔性胶原水凝胶(E = 22 kPa)上的 hiPSC-CM 单层中的收缩时空特征。比较了在刚性和柔性基质上异丙肾上腺素对收缩的影响。为了阐明潜在机制,还进行了进一步的基因表达和计算研究。与水凝胶、无基质培养或单个细胞相比,hiPSC-CM 单层在刚性表面上表现出多相收缩曲线,而后者仅观察到简单的抽搐样时程。异丙肾上腺素在任何表面上都没有改变收缩曲线,但在水凝胶中的变时和变力效应大于玻璃。在刚性和柔性基质之间,应激激活基因 NPPA 和 NPPB 的表达没有显著差异。细胞簇的计算模型表明,由于细胞间功能异质性,在刚性基质上也存在类似的复杂收缩相互作用。刚性生物材料表面导致 hiPSC-CM 单层产生非生理的多相收缩。柔性基质对于正常的抽搐样收缩动力学和变力干预的解释是必要的。关键点:在常规刚性表面(玻璃或塑料)上接种的人诱导多能干细胞衍生的心肌细胞(hiPSC-CM)单层的时空收缩性分析显示,尽管在同一区域记录到的动作电位相同,但整个单层仍存在多相收缩模式,且具有很高的可变性。在单个细胞、脱离的单层或在水凝胶等软基质上接种的单层中不存在这些多相模式,仅观察到“抽搐”样瞬变。显示出高比例多相收缩区域的 hiPSC-CM 单层的收缩持续时间明显延长,对变力药物的反应性降低。没有迹象表明多相收缩模式与应激激活的 NPPA 或 NPPB 信号通路的显著激活有关。细胞簇的计算模型支持以下生物学发现,即刚性表面和细胞-基质附着的差异是 hiPSC-CM 多相收缩行为的基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验