Department of Bioengineering, Marmara University, Göztepe Campus, 34722, Kadikoy, Istanbul, Turkey.
Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
Appl Microbiol Biotechnol. 2021 Dec;105(24):9103-9111. doi: 10.1007/s00253-021-11681-5. Epub 2021 Nov 11.
An increase in the number of elderly people suffering from the symptoms of Parkinson's disease is leading to an expansion in the market size of 3,4-dihydroxyphenyl-L-alanine (L-DOPA), which is the most commonly used drug for the treatment of this disease. Need for better quality products through economically feasible and sustainable processes makes biotechnological approaches attractive. The current study is focused on heterologous expression of Ralstonia solanacearum tyrosinase in Corynebacterium glutamicum cells to produce L-DOPA during growth on glucose or glucose/xylose mixtures. Whole-cells pre-grown on glucose were further exploited for biotransformation of L-tyrosine to L-DOPA. To prevent L-DOPA oxidation, not only the most commonly used agent, ascorbic acid, but also for the first time, thymol was evaluated. The highest L-DOPA titer was 0.26 ± 0.02 g/L at the end of growth on a mixture of 1% xylose and 3% glucose in the presence of 200 μM thymol as the oxidation inhibitor. The ability to co-utilize glucose and xylose to reach this titer could make these cells ideal for L-DOPA production using hydrolyzed lignocellulosic biomass. When the pre-grown cells were further used for biotransformation, the highest L-DOPA yield was 0.61 ± 0.02 g/gDCW with 4 mM ascorbic acid. Since L-tyrosine biotransformation is primarily dependent on tyrosinase activity, yield in this route could be improved by optimizing reaction conditions. As the industrial workhorse for amino acid production, these C. glutamicum cells will clearly benefit from strain development efforts and bioprocess optimization towards sustainable and economically feasible L-DOPA production. KEY POINTS: • Fermentative l-DOPA production was achieved in C. glutamicum. • Tyrosinase produced by C. glutamicum cells successfully transformed l-Tyr. • Thymol proved to be a significant oxidation inhibitor for l-DOPA production.
患有帕金森病症状的老年人数量增加,导致 3,4-二羟基苯丙氨酸(L-DOPA)的市场规模扩大,L-DOPA 是治疗这种疾病最常用的药物。通过经济可行且可持续的工艺生产更好质量的产品,这使得生物技术方法具有吸引力。本研究专注于在谷氨酸棒状杆菌细胞中异源表达罗尔斯通氏菌酪氨酸酶,以在葡萄糖或葡萄糖/木糖混合物上生长时生产 L-DOPA。在葡萄糖上预培养的全细胞进一步用于 L-酪氨酸向 L-DOPA 的生物转化。为了防止 L-DOPA 氧化,不仅使用了最常用的抗坏血酸,而且还首次评估了百里酚。在存在 200 μM 百里酚作为氧化抑制剂的情况下,在 1%木糖和 3%葡萄糖混合物上生长结束时,L-DOPA 的最高滴度为 0.26±0.02 g/L。这些细胞能够共利用葡萄糖和木糖达到这个滴度,可以使它们成为使用水解木质纤维素生物质生产 L-DOPA 的理想选择。当进一步使用预培养的细胞进行生物转化时,使用 4 mM 抗坏血酸,L-DOPA 的最高产率为 0.61±0.02 g/gDCW。由于 L-酪氨酸的生物转化主要依赖于酪氨酸酶的活性,因此通过优化反应条件可以提高该途径的产率。作为氨基酸生产的工业主力,这些谷氨酸棒状杆菌细胞将明显受益于针对可持续和经济可行的 L-DOPA 生产的菌株开发工作和生物工艺优化。关键点: • 在谷氨酸棒状杆菌中实现了发酵生产 L-DOPA。 • 谷氨酸棒状杆菌细胞产生的酪氨酸酶成功转化了 L-Tyr。 • 百里酚被证明是 L-DOPA 生产的有效氧化抑制剂。