Bommanaboyena S P, Backes D, Veiga L S I, Dhesi S S, Niu Y R, Sarpi B, Denneulin T, Kovács A, Mashoff T, Gomonay O, Sinova J, Everschor-Sitte K, Schönke D, Reeve R M, Kläui M, Elmers H-J, Jourdan M
Institut für Physik, Johannes Gutenberg-Universität, Staudingerweg 7, D-55099, Mainz, Germany.
Diamond Light Source, Chilton, Didcot, Oxfordshire, OX11 0DE, United Kingdom.
Nat Commun. 2021 Nov 11;12(1):6539. doi: 10.1038/s41467-021-26892-7.
In antiferromagnetic spintronics, the read-out of the staggered magnetization or Néel vector is the key obstacle to harnessing the ultra-fast dynamics and stability of antiferromagnets for novel devices. Here, we demonstrate strong exchange coupling of MnAu, a unique metallic antiferromagnet that exhibits Néel spin-orbit torques, with thin ferromagnetic Permalloy layers. This allows us to benefit from the well-established read-out methods of ferromagnets, while the essential advantages of antiferromagnetic spintronics are only slightly diminished. We show one-to-one imprinting of the antiferromagnetic on the ferromagnetic domain pattern. Conversely, alignment of the Permalloy magnetization reorients the MnAu Néel vector, an effect, which can be restricted to large magnetic fields by tuning the ferromagnetic layer thickness. To understand the origin of the strong coupling, we carry out high resolution electron microscopy imaging and we find that our growth yields an interface with a well-defined morphology that leads to the strong exchange coupling.
在反铁磁自旋电子学中,交错磁化强度或奈尔矢量的读出是利用反铁磁体的超快动力学和稳定性来制造新型器件的关键障碍。在此,我们展示了独特的金属反铁磁体MnAu(其具有奈尔自旋轨道扭矩)与薄铁磁坡莫合金层之间的强交换耦合。这使我们能够受益于成熟的铁磁体读出方法,而反铁磁自旋电子学的基本优势仅略有减弱。我们展示了反铁磁体在铁磁畴图案上的一对一印记。相反,坡莫合金磁化的取向会使MnAu奈尔矢量重新取向,通过调整铁磁层厚度,这种效应可被限制在大磁场中。为了理解强耦合的起源,我们进行了高分辨率电子显微镜成像,发现我们的生长产生了一个具有明确形态的界面,从而导致了强交换耦合。