Suppr超能文献

基于反常能斯特效应的磁性纳米结构近场成像

Anomalous Nernst Effect-Based Near-Field Imaging of Magnetic Nanostructures.

作者信息

Pandey Atul, Deka Jitul, Yoon Jiho, Mathew Anagha, Koerner Chris, Dreyer Rouven, Taylor James M, Parkin Stuart S P, Woltersdorf Georg

机构信息

Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120, Germany.

Institute of Physics, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, Halle 06120, Germany.

出版信息

ACS Nano. 2024 Nov 19;18(46):31949-31956. doi: 10.1021/acsnano.4c09749. Epub 2024 Nov 5.

Abstract

The anomalous Nernst effect (ANE) gives rise to an electrical response transverse to magnetization and an applied temperature gradient in a magnetic metal. A nanoscale temperature gradient can be generated by the use of a laser beam applied to the apex of an atomic force microscope tip, thereby allowing for spatially resolved ANE measurements beyond the optical diffraction limit. Such a method has been previously used to map in-plane magnetized magnetic textures. However, the spatial distribution of the out-of-plane temperature gradient, which is needed to fully interpret such ANE-based imaging, was not studied. We therefore use a well-known magnetic texture, a magnetic vortex core, to demonstrate the reliability of the ANE method for imaging of magnetic domains with nanoscale resolution. Moreover, since the ANE signal is directly proportional to the temperature gradient, we can also consider the inverse problem and deduce information about the nanoscale temperature distribution. Our results together with finite element modeling indicate that besides the out-of-plane temperature gradients there are even larger in-plane temperature gradients. Thus, we extend the ANE imaging to study the out-of-plane magnetization in a racetrack nanowire by detecting the ANE signal generated by in-plane temperature gradients. In all cases, a spatial resolution of ≈70 nm is obtained. These results are significant for the rapidly growing field of thermoelectric imaging of antiferromagnetic spintronic device structures.

摘要

反常能斯特效应(ANE)在磁性金属中产生垂直于磁化强度和外加温度梯度的电响应。通过将激光束应用于原子力显微镜尖端的顶点,可以产生纳米级温度梯度,从而实现超越光学衍射极限的空间分辨ANE测量。这种方法先前已用于绘制面内磁化的磁织构。然而,尚未研究完全解释这种基于ANE的成像所需的面外温度梯度的空间分布。因此,我们使用一种著名的磁织构——磁涡核,来证明ANE方法对纳米级分辨率磁畴成像的可靠性。此外,由于ANE信号与温度梯度成正比,我们还可以考虑反问题并推断有关纳米级温度分布的信息。我们的结果与有限元建模表明,除了面外温度梯度外,还有更大的面内温度梯度。因此,我们通过检测由面内温度梯度产生的ANE信号,将ANE成像扩展到研究跑道形纳米线中的面外磁化强度。在所有情况下,均获得了约70 nm的空间分辨率。这些结果对于反铁磁自旋电子器件结构的热电成像这一快速发展的领域具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f0f/11580384/e1004b879e27/nn4c09749_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验