Mobile Systems Design LaboratoryDepartment of Electrical and Computer EngineeringUniversity of California at San Diego La Jolla CA 92092 USA.
Department of MedicineUniversity of California at San Diego La Jolla CA 92092 USA.
IEEE J Transl Eng Health Med. 2021 Jul 19;9:2700513. doi: 10.1109/JTEHM.2021.3098173. eCollection 2021.
Blood pressure (BP) is an essential indicator for human health and is known to be greatly influenced by lifestyle factors, like activity and sleep factors. However, the degree of impact of each lifestyle factor on BP is unknown and may vary between individuals. Our goal is to investigate the relationships between BP and lifestyle factors and provide personalized and precise recommendations to improve BP, as opposed to the current practice of general lifestyle recommendations. Our proposed system consists of automated data collection using home BP monitors and wearable activity trackers and feature engineering techniques to address time-series data and enhance interpretability. We propose Random Forest with Shapley-Value-based Feature Selection to offer personalized BP modeling and top lifestyle factor identification, and subsequent generation of precise recommendations based on the top factors. In collaboration with UC San Diego Health and Altman Clinical and Translational Research Institute, we performed a clinical study, applying our system to 25 patients with elevated BP or stage I hypertension for three consecutive months. Our study results validate our system's ability to provide accurate personalized BP models and identify the top features which can vary greatly between individuals. We also validate the effectiveness of personalized recommendations in a randomized controlled experiment. After receiving recommendations, the subjects in the experimental group decreased their BPs by 3.8 and 2.3 for systolic and diastolic BP, compared to the decrease of 0.3 and 0.9 for the subjects without recommendations. The study demonstrates the potential of using wearables and machine learning to develop personalized models and precise lifestyle recommendations to improve BP.
血压(BP)是人体健康的重要指标,已知其受生活方式因素的影响很大,如活动和睡眠因素。然而,每个生活方式因素对 BP 的影响程度尚不清楚,并且可能因人而异。我们的目标是研究 BP 与生活方式因素之间的关系,并提供个性化和精确的建议来改善 BP,而不是目前普遍的生活方式建议。
我们提出的系统包括使用家庭血压监测器和可穿戴活动追踪器自动收集数据,以及特征工程技术来解决时间序列数据并提高可解释性。我们提出了基于随机森林和 Shapley 值特征选择的方法,为个性化 BP 建模和顶级生活方式因素识别提供支持,并根据顶级因素生成精确的建议。
我们与加利福尼亚大学圣地亚哥分校健康中心和 Altman 临床和转化研究所以及 25 名血压升高或 I 期高血压患者合作进行了一项临床研究,该研究使用我们的系统连续三个月对患者进行监测。我们的研究结果验证了我们的系统提供准确的个性化 BP 模型和识别个体间差异很大的顶级特征的能力。我们还在随机对照实验中验证了个性化建议的有效性。在收到建议后,实验组的受试者收缩压和舒张压分别降低了 3.8 和 2.3,而没有建议的受试者分别降低了 0.3 和 0.9。
该研究表明,使用可穿戴设备和机器学习来开发个性化模型和精确的生活方式建议来改善 BP 是有潜力的。