Suppr超能文献

使用卷积神经网络仅从光电容积脉搏波描记图波形估计无袖带血压

Cuffless Blood Pressure Estimation from only the Waveform of Photoplethysmography using CNN.

作者信息

Shimazaki Shota, Kawanaka Haruki, Ishikawa Hiroki, Inoue Koichi, Oguri Koji

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:5042-5045. doi: 10.1109/EMBC.2019.8856706.

Abstract

Although the pulse transit time is generally used for blood pressure estimation without a cuff, a method of estimating blood pressure only from photoplethysmography (PPG) based on the relationship between pulse waveform and blood pressure has been studied. This can eliminate the need for an electrocardiogram and allow more continuous and simpler blood pressure measurement. Previous studies have proposed methods of machine learning by extracting features such as wave height and time difference, or generating features with an auto-encoder. In this paper, we propose a method to estimate blood pressure and to automatically generate features from pulse wave using the convolutional neural networks (CNN). By comparing the accuracy of the proposed method with that of the conventional method, the effectiveness of cuffless blood pressure estimation from only PPG by using CNN is examined.

摘要

虽然脉搏传输时间通常用于无袖带血压估计,但一种仅基于脉搏波形与血压之间的关系从光电容积脉搏波描记法(PPG)估计血压的方法已得到研究。这可以消除对心电图的需求,并实现更连续、更简单的血压测量。先前的研究提出了通过提取诸如波高和时间差等特征,或使用自动编码器生成特征的机器学习方法。在本文中,我们提出了一种使用卷积神经网络(CNN)从脉搏波估计血压并自动生成特征的方法。通过将所提出方法的准确性与传统方法的准确性进行比较,研究了仅使用CNN从PPG进行无袖带血压估计的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验