Suppr超能文献

基于个性化机器学习的医疗保健专业人员幸福感和同理心预测

Personalized Machine Learning-Based Prediction of Wellbeing and Empathy in Healthcare Professionals.

作者信息

Nan Jason, Herbert Matthew S, Purpura Suzanna, Henneken Andrea N, Ramanathan Dhakshin, Mishra Jyoti

机构信息

Neural Engineering and Translation Labs, University of California San Diego, La Jolla, CA 92093, USA.

Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.

出版信息

Sensors (Basel). 2024 Apr 20;24(8):2640. doi: 10.3390/s24082640.

Abstract

Healthcare professionals are known to suffer from workplace stress and burnout, which can negatively affect their empathy for patients and quality of care. While existing research has identified factors associated with wellbeing and empathy in healthcare professionals, these efforts are typically focused on the group level, ignoring potentially important individual differences and implications for individualized intervention approaches. In the current study, we implemented N-of-1 personalized machine learning (PML) to predict wellbeing and empathy in healthcare professionals at the individual level, leveraging ecological momentary assessments (EMAs) and smartwatch wearable data. A total of 47 mood and lifestyle feature variables (relating to sleep, diet, exercise, and social connections) were collected daily for up to three months followed by applying eight supervised machine learning (ML) models in a PML pipeline to predict wellbeing and empathy separately. Predictive insight into the model architecture was obtained using Shapley statistics for each of the best-fit personalized models, ranking the importance of each feature for each participant. The best-fit model and top features varied across participants, with anxious mood (13/19) and depressed mood (10/19) being the top predictors in most models. Social connection was a top predictor for wellbeing in 9/12 participants but not for empathy models (1/7). Additionally, empathy and wellbeing were the top predictors of each other in 64% of cases. These findings highlight shared and individual features of wellbeing and empathy in healthcare professionals and suggest that a one-size-fits-all approach to addressing modifiable factors to improve wellbeing and empathy will likely be suboptimal. In the future, such personalized models may serve as actionable insights for healthcare professionals that lead to increased wellness and quality of patient care.

摘要

众所周知,医疗保健专业人员会遭受工作场所的压力和职业倦怠,这会对他们对患者的同理心和护理质量产生负面影响。虽然现有研究已经确定了与医疗保健专业人员的幸福感和同理心相关的因素,但这些努力通常集中在群体层面,忽略了潜在的重要个体差异以及对个性化干预方法的影响。在当前的研究中,我们实施了单病例个性化机器学习(PML),以在个体层面预测医疗保健专业人员的幸福感和同理心,利用生态瞬时评估(EMA)和智能手表可穿戴数据。每天收集总共47个情绪和生活方式特征变量(与睡眠、饮食、运动和社交关系有关),持续长达三个月,随后在PML流程中应用八个监督机器学习(ML)模型分别预测幸福感和同理心。使用Shapley统计量对每个最佳拟合个性化模型进行模型架构的预测性洞察,对每个参与者的每个特征的重要性进行排名。最佳拟合模型和顶级特征因参与者而异,焦虑情绪(13/19)和抑郁情绪(10/19)是大多数模型中的顶级预测因素。社交关系是12名参与者中9名参与者幸福感的顶级预测因素,但不是同理心模型的顶级预测因素(1/7)。此外,在64%的情况下,同理心和幸福感是彼此的顶级预测因素。这些发现突出了医疗保健专业人员幸福感和同理心的共同特征和个体特征,并表明采用一刀切的方法来解决可改变的因素以改善幸福感和同理心可能效果不佳。未来,这种个性化模型可能为医疗保健专业人员提供可操作的见解,从而提高健康水平和患者护理质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3857/11053570/9c11679c2581/sensors-24-02640-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验