Suppr超能文献

基于智能手机的人工智能方法在糖尿病视网膜病变中的应用:文献综述与荟萃分析。

The Utility of Smartphone-Based Artificial Intelligence Approaches for Diabetic Retinopathy: A Literature Review and Meta-Analysis.

作者信息

Sheikh Aadil, Bhatti Ahsan, Adeyemi Oluwaseun, Raja Muhammad, Sheikh Ijaz

机构信息

Department of Health Services Research and Policy, Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, UK.

Department of Ophthalmology, Singleton Hospital, Swansea, Wales, UK.

出版信息

J Curr Ophthalmol. 2021 Oct 22;33(3):219-226. doi: 10.4103/2452-2325.329064. eCollection 2021 Jul-Sep.

Abstract

PURPOSE

To assess the diagnostic accuracy measures such as sensitivity and specificity of smartphone-based artificial intelligence (AI) approaches in the detection of diabetic retinopathy (DR).

METHODS

A literature search of the EMBASE and MEDLINE databases (up to March 2020) was conducted. Only studies using both smartphone-based cameras and AI software for image analysis were included. The main outcome measures were pooled sensitivity and specificity, diagnostic odds ratios and relative risk of smartphone-based AI approaches in detecting DR (of all types), and referable DR (RDR) (moderate nonproliferative retinopathy or worse and/or the presence of diabetic macular edema).

RESULTS

Smartphone-based AI has a pooled sensitivity of 89.5% (95% confidence interval [CI]: 82.3%-94.0%) and pooled specificity of 92.4% (95% CI: 86.4%-95.9%) in detecting DR. For referable disease, sensitivity is 97.9% (95% CI: 92.6%-99.4%), and the pooled specificity is 85.9% (95% CI: 76.5%-91.9%). The technology is better at correctly identifying referable retinopathy.

CONCLUSIONS

The smartphone-based AI programs demonstrate high diagnostic accuracy for the detection of DR and RDR and are potentially viable substitutes for conventional diabetic screening approaches. Further, high-quality randomized controlled trials are required to establish the effectiveness of this approach in different populations.

摘要

目的

评估基于智能手机的人工智能(AI)方法在检测糖尿病视网膜病变(DR)时的诊断准确性指标,如敏感性和特异性。

方法

对EMBASE和MEDLINE数据库进行文献检索(截至2020年3月)。仅纳入使用基于智能手机的摄像头和AI软件进行图像分析的研究。主要结局指标为基于智能手机的AI方法检测DR(所有类型)和可转诊性DR(RDR,中度非增殖性视网膜病变或更严重病变和/或存在糖尿病性黄斑水肿)的合并敏感性和特异性、诊断比值比和相对风险。

结果

基于智能手机的AI检测DR时的合并敏感性为89.5%(95%置信区间[CI]:82.3%-94.0%),合并特异性为92.4%(95%CI:86.4%-95.9%)。对于可转诊性疾病,敏感性为97.9%(95%CI:92.6%-99.4%),合并特异性为85.9%(95%CI:76.5%-91.9%)。该技术在正确识别可转诊性视网膜病变方面表现更佳。

结论

基于智能手机的AI程序在检测DR和RDR方面显示出较高的诊断准确性,并且可能是传统糖尿病筛查方法的可行替代方案。此外,需要高质量的随机对照试验来确定该方法在不同人群中的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4602/8579798/067f676940fb/JCO-33-219-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验