AL& ML, Remidio Innovative Solutions, Inc, Glen Allen, USA.
AI&ML, Medios Technologies Pte Ltd, Remidio Innovative Solutions, Singapore.
Indian J Ophthalmol. 2024 Aug 1;72(8):1162-1167. doi: 10.4103/IJO.IJO_2151_23. Epub 2024 Jul 29.
This study aimed to determine the generalizability of an artificial intelligence (AI) algorithm trained on an ethnically diverse dataset to screen for referable diabetic retinopathy (RDR) in the Armenian population unseen during AI development.
This study comprised 550 patients with diabetes mellitus visiting the polyclinics of Armenia over 10 months requiring diabetic retinopathy (DR) screening. The Medios AI-DR algorithm was developed using a robust, diverse, ethnically balanced dataset with no inherent bias and deployed offline on a smartphone-based fundus camera. The algorithm here analyzed the retinal images captured using the target device for the presence of RDR (i.e., moderate non-proliferative diabetic retinopathy (NPDR) and/or clinically significant diabetic macular edema (CSDME) or more severe disease) and sight-threatening DR (STDR, i.e., severe NPDR and/or CSDME or more severe disease). The results compared the AI output to a consensus or majority image grading of three expert graders according to the International Clinical Diabetic Retinopathy severity scale.
On 478 subjects included in the analysis, the algorithm achieved a high classification sensitivity of 95.30% (95% CI: 91.9%-98.7%) and a specificity of 83.89% (95% CI: 79.9%-87.9%) for the detection of RDR. The sensitivity for STDR detection was 100%.
The study proved that Medios AI-DR algorithm yields good accuracy in screening for RDR in the Armenian population. In our literature search, this is the only smartphone-based, offline AI model validated in different populations.
本研究旨在确定在人工智能(AI)算法开发过程中未见过的亚美尼亚人群中,针对糖尿病性视网膜病变(DR)进行筛查,该算法是在一个种族多样化的数据集上进行训练的,以确定其是否具有普遍性。
本研究纳入了 10 个月内在亚美尼亚多家诊所就诊的 550 名糖尿病患者,这些患者需要进行 DR 筛查。使用一个稳健、多样化、种族平衡的数据集,没有内在偏见,开发了 Medios AI-DR 算法,该算法在基于智能手机的眼底相机上离线运行。该算法分析了使用目标设备拍摄的视网膜图像,以确定是否存在 RDR(即中度非增生性糖尿病性视网膜病变(NPDR)和/或临床显著糖尿病性黄斑水肿(CSDME)或更严重的疾病)和威胁视力的 DR(STDR,即严重 NPDR 和/或 CSDME 或更严重的疾病)。结果将 AI 输出与三位专家根据国际临床糖尿病视网膜病变严重程度标准的共识或多数图像分级进行了比较。
在纳入分析的 478 名患者中,该算法对 RDR 的检测具有较高的分类灵敏度 95.30%(95%CI:91.9%-98.7%)和特异性 83.89%(95%CI:79.9%-87.9%)。STDR 的检测灵敏度为 100%。
该研究证明了 Medios AI-DR 算法在亚美尼亚人群中对 RDR 的筛查具有良好的准确性。在我们的文献检索中,这是唯一在不同人群中得到验证的基于智能手机的离线 AI 模型。