Suppr超能文献

面部表情引发了对情绪类别和维度的多重感知。

Facial expressions elicit multiplexed perceptions of emotion categories and dimensions.

机构信息

School of Psychology & Neuroscience, University of Glasgow, 62 Hillhead Street, Glasgow G12 8QB, UK.

School of Psychology & Neuroscience, University of Glasgow, 62 Hillhead Street, Glasgow G12 8QB, UK.

出版信息

Curr Biol. 2022 Jan 10;32(1):200-209.e6. doi: 10.1016/j.cub.2021.10.035. Epub 2021 Nov 11.

Abstract

Human facial expressions are complex, multi-component signals that can communicate rich information about emotions, including specific categories, such as "anger," and broader dimensions, such as "negative valence, high arousal." An enduring question is how this complex signaling is achieved. Communication theory predicts that multi-component signals could transmit each type of emotion information-i.e., specific categories and broader dimensions-via the same or different facial signal components, with implications for elucidating the system and ontology of facial expression communication. We addressed this question using a communication-systems-based method that agnostically generates facial expressions and uses the receiver's perceptions to model the specific facial signal components that represent emotion category and dimensional information to them. First, we derived the facial expressions that elicit the perception of emotion categories (i.e., the six classic emotions plus 19 complex emotions) and dimensions (i.e., valence and arousal) separately, in 60 individual participants. Comparison of these facial signals showed that they share subsets of components, suggesting that specific latent signals jointly represent-i.e., multiplex-categorical and dimensional information. Further examination revealed these specific latent signals and the joint information they represent. Our results-based on white Western participants, same-ethnicity face stimuli, and commonly used English emotion terms-show that facial expressions can jointly represent specific emotion categories and broad dimensions to perceivers via multiplexed facial signal components. Our results provide insights into the ontology and system of facial expression communication and a new information-theoretic framework that can characterize its complexities.

摘要

人类的面部表情是复杂的、多成分的信号,可以传递丰富的情感信息,包括特定的类别,如“愤怒”,以及更广泛的维度,如“负性效价、高唤醒度”。一个持久的问题是,这种复杂的信号是如何实现的。交流理论预测,多成分信号可以通过相同或不同的面部信号成分传递每种情感信息,即特定的类别和更广泛的维度,这对阐明面部表情交流的系统和本体论具有重要意义。我们使用基于通信系统的方法来解决这个问题,这种方法可以生成面部表情,并使用接收者的感知来对特定的面部信号成分进行建模,这些成分代表了他们对情绪类别和维度信息的感知。首先,我们在 60 名个体参与者中分别推导出了引起情绪类别(即六种经典情绪加上 19 种复杂情绪)和维度(即效价和唤醒度)感知的面部表情。对这些面部信号的比较表明,它们共享成分子集,这表明特定的潜在信号共同表示,即多通道分类和维度信息。进一步的研究揭示了这些特定的潜在信号和它们所代表的联合信息。我们的研究结果基于白种西方参与者、同种族面部刺激和常用的英语情感术语,表明面部表情可以通过多成分的面部信号共同向感知者表示特定的情绪类别和广泛的维度。我们的研究结果为面部表情交流的本体论和系统提供了新的见解,并提供了一种新的信息论框架,可以描述其复杂性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6db3/8751635/c5d9bfd7dc7a/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验