Suppr超能文献

基于 RNA 测序基因表达的可解释通路深度学习进行癌症与正常组织的分类与功能分析。

Classification and Functional Analysis between Cancer and Normal Tissues Using Explainable Pathway Deep Learning through RNA-Sequencing Gene Expression.

机构信息

Department of Advanced Convergence, Handong Global University, Pohang-si 37554, Gyeongbuk, Korea.

Department of Life Science, Handong Global University, Pohang-si 37554, Gyeongbuk, Korea.

出版信息

Int J Mol Sci. 2021 Oct 26;22(21):11531. doi: 10.3390/ijms222111531.

Abstract

Deep learning has proven advantageous in solving cancer diagnostic or classification problems. However, it cannot explain the rationale behind human decisions. Biological pathway databases provide well-studied relationships between genes and their pathways. As pathways comprise knowledge frameworks widely used by human researchers, representing gene-to-pathway relationships in deep learning structures may aid in their comprehension. Here, we propose a deep neural network (PathDeep), which implements gene-to-pathway relationships in its structure. We also provide an application framework measuring the contribution of pathways and genes in deep neural networks in a classification problem. We applied PathDeep to classify cancer and normal tissues based on the publicly available, large gene expression dataset. PathDeep showed higher accuracy than fully connected neural networks in distinguishing cancer from normal tissues (accuracy = 0.994) in 32 tissue samples. We identified 42 pathways related to 32 cancer tissues and 57 associated genes contributing highly to the biological functions of cancer. The most significant pathway was G-protein-coupled receptor signaling, and the most enriched function was the G1/S transition of the mitotic cell cycle, suggesting that these biological functions were the most common cancer characteristics in the 32 tissues.

摘要

深度学习在解决癌症诊断或分类问题方面已被证明具有优势。然而,它无法解释人类决策的基本原理。生物途径数据库提供了经过充分研究的基因与其途径之间的关系。由于途径构成了人类研究人员广泛使用的知识框架,因此在深度学习结构中表示基因与途径之间的关系可能有助于对其进行理解。在这里,我们提出了一种深度神经网络(PathDeep),它在其结构中实现了基因与途径之间的关系。我们还提供了一个应用框架,用于在分类问题中衡量途径和基因在深度神经网络中的贡献。我们应用 PathDeep 基于公开的大型基因表达数据集来对癌症和正常组织进行分类。PathDeep 在区分癌症和正常组织(准确性=0.994)方面的 32 个组织样本中比全连接神经网络具有更高的准确性。我们确定了与 32 种癌症组织相关的 42 种途径和对癌症生物学功能贡献很大的 57 个相关基因。最重要的途径是 G 蛋白偶联受体信号转导,最丰富的功能是有丝分裂细胞周期的 G1/S 转换,这表明这些生物学功能是 32 种组织中最常见的癌症特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da2d/8584109/aba228fc623d/ijms-22-11531-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验