文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的跨分类揭示了肿瘤组织学图像中保守的空间行为。

Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images.

机构信息

The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.

Computational Sciences PhD Program, University of Massachusetts-Boston, Boston, MA, USA.

出版信息

Nat Commun. 2020 Dec 11;11(1):6367. doi: 10.1038/s41467-020-20030-5.


DOI:10.1038/s41467-020-20030-5
PMID:33311458
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7733499/
Abstract

Histopathological images are a rich but incompletely explored data type for studying cancer. Manual inspection is time consuming, making it challenging to use for image data mining. Here we show that convolutional neural networks (CNNs) can be systematically applied across cancer types, enabling comparisons to reveal shared spatial behaviors. We develop CNN architectures to analyze 27,815 hematoxylin and eosin scanned images from The Cancer Genome Atlas for tumor/normal, cancer subtype, and mutation classification. Our CNNs are able to classify TCGA pathologist-annotated tumor/normal status of whole slide images (WSIs) in 19 cancer types with consistently high AUCs (0.995 ± 0.008), as well as subtypes with lower but significant accuracy (AUC 0.87 ± 0.1). Remarkably, tumor/normal CNNs trained on one tissue are effective in others (AUC 0.88 ± 0.11), with classifier relationships also recapitulating known adenocarcinoma, carcinoma, and developmental biology. Moreover, classifier comparisons reveal intra-slide spatial similarities, with an average tile-level correlation of 0.45 ± 0.16 between classifier pairs. Breast cancers, bladder cancers, and uterine cancers have spatial patterns that are particularly easy to detect, suggesting these cancers can be canonical types for image analysis. Patterns for TP53 mutations can also be detected, with WSI self- and cross-tissue AUCs ranging from 0.65-0.80. Finally, we comparatively evaluate CNNs on 170 breast and colon cancer images with pathologist-annotated nuclei, finding that both cellular and intercellular regions contribute to CNN accuracy. These results demonstrate the power of CNNs not only for histopathological classification, but also for cross-comparisons to reveal conserved spatial behaviors across tumors.

摘要

组织病理学图像是一种丰富但尚未充分探索的数据类型,可用于研究癌症。手动检查既费时又费力,因此难以用于图像数据挖掘。在这里,我们表明卷积神经网络(CNN)可以系统地应用于各种癌症类型,从而可以进行比较以揭示共享的空间行为。我们开发了 CNN 架构来分析来自癌症基因组图谱的 27815 张苏木精和伊红扫描图像,用于肿瘤/正常、癌症亚型和突变分类。我们的 CNN 能够以始终保持较高 AUC(0.995±0.008)的方式对 19 种癌症类型的 TCGA 病理学家注释的全幻灯片图像(WSI)的肿瘤/正常状态进行分类,以及对分类准确性较低但有显著意义的亚型进行分类(AUC 0.87±0.1)。值得注意的是,在一种组织上训练的肿瘤/正常 CNN 在其他组织上也很有效(AUC 0.88±0.11),并且分类器之间的关系也再现了已知的腺癌、癌和发育生物学。此外,分类器比较揭示了幻灯片内的空间相似性,平均在分类器对之间的瓦片级相关性为 0.45±0.16。乳腺癌、膀胱癌和子宫癌具有特别容易检测到的空间模式,这表明这些癌症可以作为图像分析的典型类型。还可以检测到 TP53 突变的模式,WSI 自我和跨组织 AUC 范围为 0.65-0.80。最后,我们在具有病理学家注释核的 170 张乳腺癌和结肠癌图像上比较了 CNN 的性能,发现细胞内和细胞间区域都有助于 CNN 的准确性。这些结果表明 CNN 的强大功能不仅可用于组织病理学分类,还可用于比较以揭示肿瘤之间的保守空间行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/7733499/a87718ca7568/41467_2020_20030_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/7733499/459ac934f9bb/41467_2020_20030_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/7733499/8c36ea6fc2dc/41467_2020_20030_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/7733499/cb160715ddb9/41467_2020_20030_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/7733499/e56fb18fc8ac/41467_2020_20030_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/7733499/2f6cd0035364/41467_2020_20030_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/7733499/37e81a4b530d/41467_2020_20030_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/7733499/cc2c3e964b4d/41467_2020_20030_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/7733499/4d4c7d980b3e/41467_2020_20030_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/7733499/a87718ca7568/41467_2020_20030_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/7733499/459ac934f9bb/41467_2020_20030_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/7733499/8c36ea6fc2dc/41467_2020_20030_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/7733499/cb160715ddb9/41467_2020_20030_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/7733499/e56fb18fc8ac/41467_2020_20030_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/7733499/2f6cd0035364/41467_2020_20030_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/7733499/37e81a4b530d/41467_2020_20030_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/7733499/cc2c3e964b4d/41467_2020_20030_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/7733499/4d4c7d980b3e/41467_2020_20030_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1756/7733499/a87718ca7568/41467_2020_20030_Fig9_HTML.jpg

相似文献

[1]
Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images.

Nat Commun. 2020-12-11

[2]
A deep learning image-based intrinsic molecular subtype classifier of breast tumors reveals tumor heterogeneity that may affect survival.

Breast Cancer Res. 2020-1-28

[3]
BrcaSeg: A Deep Learning Approach for Tissue Quantification and Genomic Correlations of Histopathological Images.

Genomics Proteomics Bioinformatics. 2021-12

[4]
Deep learning features encode interpretable morphologies within histological images.

Sci Rep. 2022-6-8

[5]
SAMPLER: unsupervised representations for rapid analysis of whole slide tissue images.

EBioMedicine. 2024-1

[6]
Deep learning for colon cancer histopathological images analysis.

Comput Biol Med. 2021-9

[7]
Deep-Hipo: Multi-scale receptive field deep learning for histopathological image analysis.

Methods. 2020-7-1

[8]
Deep Learning Models for Histopathological Classification of Gastric and Colonic Epithelial Tumours.

Sci Rep. 2020-1-30

[9]
Deep learning-based six-type classifier for lung cancer and mimics from histopathological whole slide images: a retrospective study.

BMC Med. 2021-3-29

[10]
Prediction of clinically actionable genetic alterations from colorectal cancer histopathology images using deep learning.

World J Gastroenterol. 2020-10-28

引用本文的文献

[1]
Deep learning in histopathology images for prediction of oncogenic driver molecular alterations in lung cancer: a systematic review and meta-analysis.

Transl Lung Cancer Res. 2025-5-30

[2]
Graph-based analysis of histopathological images for lung cancer classification using GLCM features and enhanced graph.

Front Oncol. 2025-5-30

[3]
Systematic scoping review of external validation studies of AI pathology models for lung cancer diagnosis.

NPJ Precis Oncol. 2025-6-7

[4]
The current landscape of artificial intelligence in computational histopathology for cancer diagnosis.

Discov Oncol. 2025-4-1

[5]
Deep Multi-Modal Skin-Imaging-Based Information-Switching Network for Skin Lesion Recognition.

Bioengineering (Basel). 2025-3-12

[6]
Next-generation sequencing based deep learning model for prediction of HER2 status and response to HER2-targeted neoadjuvant chemotherapy.

J Cancer Res Clin Oncol. 2025-2-9

[7]
Prediction of biochemical prostate cancer recurrence from any Gleason score using robust tissue structure and clinically available information.

Discov Oncol. 2025-2-7

[8]
Tumour purity assessment with deep learning in colorectal cancer and impact on molecular analysis.

J Pathol. 2025-2

[9]
Empowering cancer prevention with AI: unlocking new frontiers in prediction, diagnosis, and intervention.

Cancer Causes Control. 2025-4

[10]
Artificial intelligence application in the diagnosis and treatment of bladder cancer: advance, challenges, and opportunities.

Front Oncol. 2024-11-7

本文引用的文献

[1]
Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis.

Nat Cancer. 2020-8

[2]
Pan-cancer image-based detection of clinically actionable genetic alterations.

Nat Cancer. 2020-8

[3]
Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks.

J Am Med Inform Assoc. 2020-5-1

[4]
Clinical-grade computational pathology using weakly supervised deep learning on whole slide images.

Nat Med. 2019-7-15

[5]
Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks.

Sci Rep. 2019-3-4

[6]
BreCaHAD: a dataset for breast cancer histopathological annotation and diagnosis.

BMC Res Notes. 2019-2-12

[7]
Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning.

Nat Med. 2018-9-17

[8]
Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype.

NPJ Breast Cancer. 2018-9-3

[9]
Comprehensive Characterization of Cancer Driver Genes and Mutations.

Cell. 2018-8-9

[10]
The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma.

Cell Rep. 2018-6-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索