Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
Int J Mol Sci. 2021 Oct 30;22(21):11792. doi: 10.3390/ijms222111792.
Live-cell Ca2+ fluorescence microscopy is a cornerstone of cellular signaling analysis and imaging. The demand for high spatial and temporal imaging resolution is, however, intrinsically linked to a low signal-to-noise ratio (SNR) of the acquired spatio-temporal image data, which impedes on the subsequent image analysis. Advanced deconvolution and image restoration algorithms can partly mitigate the corresponding problems but are usually defined only for images. Frame-by-frame application to spatio-temporal image data neglects inter-frame contextual relationships and temporal consistency of the imaged biological processes. Here, we propose a variational approach to image restoration built on entropy-based regularization specifically suited to process low- and lowest-SNR fluorescence microscopy data. The advantage of the presented approach is demonstrated by means of four datasets: synthetic data for in-depth evaluation of the algorithm behavior; two datasets acquired for analysis of initial Ca2+ microdomains in T-cells; finally, to illustrate the transferability of the methodical concept to different applications, one dataset depicting spontaneous Ca2+ signaling in jGCaMP7b-expressing astrocytes. To foster re-use and reproducibility, the source code is made publicly available.
活细胞 Ca2+ 荧光显微镜是细胞信号分析和成像的基石。然而,对高时空成像分辨率的需求与所获取的时空图像数据的信噪比(SNR)固有地低相关,这阻碍了后续的图像分析。先进的去卷积和图像恢复算法可以部分缓解相应的问题,但通常仅针对图像定义。逐帧应用于时空图像数据会忽略帧间上下文关系和所成像生物过程的时间一致性。在这里,我们提出了一种基于基于熵正则化的变分图像恢复方法,特别适合处理低 SNR 和最低 SNR 的荧光显微镜数据。通过四个数据集来证明所提出方法的优势:用于深入评估算法行为的合成数据集;用于分析 T 细胞中初始 Ca2+ 微域的两个数据集;最后,为了说明方法概念到不同应用的可转移性,一个数据集描绘了表达 jGCaMP7b 的星形胶质细胞中的自发 Ca2+ 信号。为了促进重用和可重复性,公开了源代码。