Bomer Nils, Pavez-Giani Mario G, Deiman Frederik E, Linders Annet N, Hoes Martijn F, Baierl Christiane L J, Oberdorf-Maass Silke U, de Boer Rudolf A, Silljé Herman H W, Berezikov Eugene, Simonides Warner S, Westenbrink B Daan, van der Meer Peter
Department of Cardiology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands.
European Research Institute for the Biology of Ageing (ERIBA), University Medical Centre Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
Int J Mol Sci. 2021 Nov 2;22(21):11906. doi: 10.3390/ijms222111906.
Members of the fetal-gene-program may act as regulatory components to impede deleterious events occurring with cardiac remodeling, and constitute potential novel therapeutic heart failure (HF) targets. Mitochondrial energy derangements occur both during early fetal development and in patients with HF. Here we aim to elucidate the role of DIO2, a member of the fetal-gene-program, in pluripotent stem cell (PSC)-derived human cardiomyocytes and on mitochondrial dynamics and energetics, specifically. RNA sequencing and pathway enrichment analysis was performed on mouse cardiac tissue at different time points during development, adult age, and ischemia-induced HF. To determine the function of DIO2 in cardiomyocytes, a stable human hPSC-line with a DIO2 knockdown was made using a short harpin sequence. Firstly, we showed the selenoprotein, type II deiodinase (DIO2): the enzyme responsible for the tissue-specific conversion of inactive (T4) into active thyroid hormone (T3), to be a member of the fetal-gene-program. Secondly, silencing DIO2 resulted in an increased reactive oxygen species, impaired activation of the mitochondrial unfolded protein response, severely impaired mitochondrial respiration and reduced cellular viability. Microscopical 3D reconstruction of the mitochondrial network displayed substantial mitochondrial fragmentation. Summarizing, we identified DIO2 to be a member of the fetal-gene-program and as a key regulator of mitochondrial performance in human cardiomyocytes. Our results suggest a key position of human DIO2 as a regulator of mitochondrial function in human cardiomyocytes.
胎儿基因程序的成员可能作为调节成分,以阻止心脏重塑过程中发生的有害事件,并构成心力衰竭(HF)潜在的新型治疗靶点。线粒体能量紊乱在胎儿早期发育期间以及HF患者中均会出现。在此,我们旨在阐明胎儿基因程序的成员——脱碘酶2(DIO2)在多能干细胞(PSC)衍生的人类心肌细胞中的作用,特别是对线粒体动力学和能量代谢的作用。对发育不同时间点、成年期以及缺血诱导的HF小鼠心脏组织进行了RNA测序和通路富集分析。为了确定DIO2在心肌细胞中的功能,使用短链干扰序列构建了一个DIO2基因敲低的稳定人类hPSC系。首先,我们发现硒蛋白II型脱碘酶(DIO2)——负责将无活性的甲状腺素(T4)转化为活性甲状腺激素(T3)的组织特异性转化的酶——是胎儿基因程序的成员之一。其次,沉默DIO2会导致活性氧增加、线粒体未折叠蛋白反应激活受损、线粒体呼吸严重受损以及细胞活力降低。线粒体网络的微观3D重建显示出线粒体大量碎片化。总之,我们确定DIO2是胎儿基因程序的成员,并且是人类心肌细胞中线粒体性能的关键调节因子。我们的结果表明人类DIO2在人类心肌细胞线粒体功能调节中处于关键地位。