Suppr超能文献

神经网络分析在微塑料分割中的应用。

Neural Network Analysis for Microplastic Segmentation.

机构信息

Department of Computer Science and Engineering, College of Engineering, Chungnam National University, Daejeon 34134, Korea.

出版信息

Sensors (Basel). 2021 Oct 23;21(21):7030. doi: 10.3390/s21217030.

Abstract

It is necessary to locate microplastic particles mixed with beach sand to be able to separate them. This paper illustrates a kernel weight histogram-based analytical process to determine an appropriate neural network to perform tiny object segmentation on photos of sand with a few microplastic particles. U-net and MultiResUNet are explored as target networks. However, based on our observation of kernel weight histograms, visualized using TensorBoard, the initial encoder stages of U-net and MultiResUNet are useful for capturing small features, whereas the later encoder stages are not useful for capturing small features. Therefore, we derived reduced versions of U-net and MultiResUNet, such as Half U-net, Half MultiResUNet, and Quarter MultiResUNet. From the experiment, we observed that Half MultiResUNet displayed the best average recall-weighted F1 score (40%) and recall-weighted mIoU (26%) and Quarter MultiResUNet the second best average recall-weighted F1 score and recall-weighted mIoU for our microplastic dataset. They also require 1/5 or less floating point operations and 1/50 or a smaller number of parameters over U-net and MultiResUNet.

摘要

为了能够分离出与海滩砂混合的微塑料颗粒,有必要对其进行定位。本文阐述了一种基于核权重直方图的分析过程,以确定适当的神经网络,以便对含有少量微塑料颗粒的沙滩照片进行微小物体分割。探索了 U-net 和 MultiResUNet 作为目标网络。然而,根据我们使用 TensorBoard 可视化的核权重直方图观察,U-net 和 MultiResUNet 的初始编码器阶段对于捕捉小特征是有用的,而后期的编码器阶段对于捕捉小特征则没有用。因此,我们推导出 U-net 和 MultiResUNet 的简化版本,如 Half U-net、Half MultiResUNet 和 Quarter MultiResUNet。从实验中我们观察到,Half MultiResUNet 在我们的微塑料数据集上显示出最佳的平均召回加权 F1 分数(40%)和召回加权 mIoU(26%),而 Quarter MultiResUNet 则以第二高的平均召回加权 F1 分数和召回加权 mIoU 排名第二。它们在浮点运算和参数数量上也分别比 U-net 和 MultiResUNet 少 1/5 或更少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0edf/8586942/cd3a113997d8/sensors-21-07030-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验