Suppr超能文献

级联分割 U-Net 用于刮削工件质量评估。

Cascaded Segmentation U-Net for Quality Evaluation of Scraping Workpiece.

机构信息

Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 701, Taiwan.

出版信息

Sensors (Basel). 2023 Jan 15;23(2):998. doi: 10.3390/s23020998.

Abstract

In the terms of industry, the hand-scraping method is a key technology for achieving high precision in machine tools, and the quality of scraping workpieces directly affects the accuracy and service life of the machine tool. However, most of the quality evaluation of the scraping workpieces is carried out by the scraping worker's subjective judgment, which results in differences in the quality of the scraping workpieces and is time-consuming. Hence, in this research, an edge-cloud computing system was developed to obtain the relevant parameters, which are the percentage of point (POP) and the peak point per square inch (PPI), for evaluating the quality of scraping workpieces. On the cloud computing server-side, a novel network called cascaded segmentation U-Net is proposed to high-quality segment the height of points (HOP) (around 40 μm height) in favor of small datasets training and then carries out a post-processing algorithm that automatically calculates POP and PPI. This research emphasizes the architecture of the network itself instead. The design of the components of our network is based on the basic idea of identity function, which not only solves the problem of the misjudgment of the oil ditch and the residual pigment but also allows the network to be end-to-end trained effectively. At the head of the network, a cascaded multi-stage pixel-wise classification is designed for obtaining more accurate HOP borders. Furthermore, the "Cross-dimension Compression" stage is used to fuse high-dimensional semantic feature maps across the depth of the feature maps into low-dimensional feature maps, producing decipherable content for final pixel-wise classification. Our system can achieve an error rate of 3.7% and 0.9 points for POP and PPI. The novel network achieves an Intersection over Union (IoU) of 90.2%.

摘要

在工业领域,手工刮研方法是实现机床高精度的关键技术,刮研工件的质量直接影响机床的精度和使用寿命。然而,刮研工件的质量大多是由刮研工人的主观判断来进行评估的,这导致了刮研工件的质量存在差异,并且耗费时间。因此,在这项研究中,开发了一个边缘云计算系统来获取相关参数,即每平方英寸的点数(PPI)和峰值点数(POP),用于评估刮研工件的质量。在云计算服务器端,提出了一种名为级联分割 U-Net 的新型网络来高质量地分割点高度(HOP)(约 40 μm 高度),有利于小数据集的训练,然后执行一个后处理算法,自动计算 POP 和 PPI。本研究强调网络本身的架构。我们网络的组件设计基于身份函数的基本思想,不仅解决了油沟和残留颜料的误判问题,而且使网络能够有效地进行端到端训练。在网络的头部,设计了级联多阶段像素分类,以获得更准确的 HOP 边界。此外,使用“跨维度压缩”阶段将跨深度的高维语义特征图融合到低维特征图中,为最终的像素分类生成可解释的内容。我们的系统可以实现 3.7%的错误率和 0.9 个 POP 和 PPI 的得分。新的网络实现了 90.2%的交并比(IoU)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b12/9866543/9f032fe126cf/sensors-23-00998-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验