Suppr超能文献

自动实时心室心跳分类方法。

Automated real-time method for ventricular heartbeat classification.

机构信息

Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain.

出版信息

Comput Methods Programs Biomed. 2019 Feb;169:1-8. doi: 10.1016/j.cmpb.2018.11.005. Epub 2018 Nov 20.

Abstract

BACKGROUND AND OBJECTIVE

In this work, we develop a fully automatic and real-time ventricular heartbeat classifier based on a single ECG lead. Single ECG lead classifiers can be especially useful for wearable technologies that provide continuous and long-term monitoring of the electrocardiogram. These wearables usually have a few non-standard leads and the quality of the signals depends on the user physical activity.

METHODS

The proposed method uses an Echo State Network (ESN) to classify ECG signals following the Association for the Advancement of Medical Instrumentation (AAMI) recommendations with an inter-patient scheme. To achieve real-time classification, the classifier itself and the feature extraction approach are fast and computationally efficient. In addition, our approach allows transferring the knowledge from one database to another without additional training.

RESULTS

The classification performance of the proposed model is validated on the MIT-BIH arrhythmia and INCART databases. The sensitivity and precision of the proposed method for MIT-BIH arrhythmia database are 95.3 and 88.8 for the modified lead II and 90.9 and 89.2 for the V1 lead. The results reported are further compared to the existing methodologies in literature. Our methodology is a competitive single lead ventricular heartbeat classifier, that is comparable to state-of-the-art algorithms using multiple leads.

CONCLUSIONS

The proposed fully automated, single-lead and real-time heartbeat classifier of ventricular heartbeats reports an improved classification accuracy in different leads of the evaluated databases in comparison with other single lead heartbeat classifiers. These results open the possibility of applying our methodology to wearable long-term monitoring devices with an unconventional placement of the electrodes.

摘要

背景与目的

本研究开发了一种基于单导联心电图的全自动实时心室心搏分类器。单导联心搏分类器对于提供心电图连续、长期监测的可穿戴技术特别有用。这些可穿戴设备通常只有少数非标准导联,并且信号质量取决于用户的身体活动情况。

方法

所提出的方法使用回声状态网络(ESN)根据医疗器械促进协会(AAMI)的建议对心电图信号进行分类,采用患者间方案。为了实现实时分类,分类器本身和特征提取方法都快速且计算效率高。此外,我们的方法允许在无需额外训练的情况下将知识从一个数据库转移到另一个数据库。

结果

该模型的分类性能在 MIT-BIH 心律失常和 INCART 数据库上得到验证。对于修改后的导联 II,所提出方法对 MIT-BIH 心律失常数据库的灵敏度和精度分别为 95.3%和 88.8%,对于 V1 导联分别为 90.9%和 89.2%。报告的结果与文献中的现有方法进一步进行了比较。我们的方法是一种具有竞争力的单导联心室心搏分类器,与使用多个导联的最新算法相当。

结论

与其他单导联心搏分类器相比,所提出的全自动、单导联和实时心室心搏分类器在评估数据库的不同导联中报告了更高的分类准确性。这些结果为将我们的方法应用于具有非传统电极放置的可穿戴长期监测设备开辟了可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验