Postgraduate Program of Teleinformatics Engineering, Federal University of Ceara, Fortaleza 60455-970, Brazil.
Departament of Teleinformatics Engineering, Federal University of Ceara, Fortaleza 60455-970, Brazil.
Sensors (Basel). 2021 Oct 30;21(21):7226. doi: 10.3390/s21217226.
The recent growth of the Internet of Things' services and applications has increased data processing and storage requirements. The Edge computing concept aims to leverage the processing capabilities of the IoT and other devices placed at the edge of the network. One embodiment of this paradigm is Fog computing, which provides an intermediate and often hierarchical processing tier between the data sources and the remote Cloud. Among the major benefits of this concept, the end-to-end latency can be decreased, thus favoring time-sensitive applications. Moreover, the data traffic at the network core and the Cloud computing workload can be reduced. Combining the Fog computing paradigm with Complex Event Processing (CEP) and data fusion techniques has excellent potential for generating valuable knowledge and aiding decision-making processes in the Internet of Things' systems. In this context, we propose a multi-tier complex event processing approach (sensor node, Fog, and Cloud) that promotes fast decision making and is based on information with 98% accuracy. The experiments show a reduction of 77% in the average time of sending messages in the network. In addition, we achieved a reduction of 82% in data traffic.
物联网服务和应用的最近增长增加了数据处理和存储的需求。边缘计算概念旨在利用物联网和其他放置在网络边缘的设备的处理能力。这种范例的一个实施例是雾计算,它在数据源和远程云之间提供了一个中间的、通常是分层的处理层。这个概念的主要好处之一是可以降低端到端延迟,从而有利于对时间敏感的应用程序。此外,可以减少网络核心的数据流量和云计算工作负载。将雾计算范例与复杂事件处理(CEP)和数据融合技术相结合,在物联网系统中生成有价值的知识和辅助决策过程方面具有巨大的潜力。在这种情况下,我们提出了一种多层复杂事件处理方法(传感器节点、雾和云),该方法基于具有 98%准确性的信息来促进快速决策。实验表明,网络中消息的平均发送时间减少了 77%。此外,我们实现了数据流量减少 82%。