Witjaksono Gunawan, Junaid Muhammad, Khir Mohd Haris, Ullah Zaka, Tansu Nelson, Saheed Mohamed Shuaib Bin Mohamed, Siddiqui Muhammad Aadil, Ba-Hashwan Saeed S, Algamili Abdullah Saleh, Magsi Saeed Ahmed, Aslam Muhammad Zubair, Nawaz Rab
BRI Institute, Jl. Harsono RM No. 2, Ragunan, Jakarta 12550, Passsar Minggu, Indonesia.
Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia.
Molecules. 2021 Oct 25;26(21):6424. doi: 10.3390/molecules26216424.
Graphene as a material for optoelectronic design applications has been significantly restricted owing to zero bandgap and non-compatible handling procedures compared with regular microelectronic ones. In this work, nitrogen-doped reduced graphene oxide (N-rGO) with tunable optical bandgap and enhanced electrical conductivity was synthesized via a microwave-assisted hydrothermal method. The properties of the synthesized N-rGO were determined using XPS, FTIR and Raman spectroscopy, UV/vis, as well as FESEM techniques. The UV/vis spectroscopic analysis confirmed the narrowness of the optical bandgap from 3.4 to 3.1, 2.5, and 2.2 eV in N-rGO samples, where N-rGO samples were synthesized with a nitrogen doping concentration of 2.80, 4.53, and 5.51 at.%. Besides, an enhanced n-type electrical conductivity in N-rGO was observed in Hall effect measurement. The observed tunable optoelectrical characteristics of N-rGO make it a suitable material for developing future optoelectronic devices at the nanoscale.
由于零带隙以及与常规微电子材料相比不兼容的处理程序,石墨烯作为一种用于光电设计应用的材料受到了极大限制。在这项工作中,通过微波辅助水热法合成了具有可调光学带隙和增强导电性的氮掺杂还原氧化石墨烯(N-rGO)。使用XPS、FTIR和拉曼光谱、紫外/可见光谱以及场发射扫描电子显微镜(FESEM)技术测定了合成的N-rGO的性能。紫外/可见光谱分析证实了N-rGO样品的光学带隙变窄,从3.4 eV降至3.1、2.5和2.2 eV,其中N-rGO样品的氮掺杂浓度分别为2.80、4.53和5.51 at.%。此外,在霍尔效应测量中观察到N-rGO的n型导电性增强。观察到的N-rGO的可调光电特性使其成为开发未来纳米级光电器件的合适材料。