FEARP-USP, Brazil.
FEARP-USP, Brazil.
Spat Spatiotemporal Epidemiol. 2021 Nov;39:100455. doi: 10.1016/j.sste.2021.100455. Epub 2021 Sep 13.
Estimating patterns of occurrence of cases and deaths related to the COVID-19 pandemic is a complex problem. The incidence of cases presents a great spatial and temporal heterogeneity, and the mechanisms of accounting for occurrences adopted by health departments induce a process of measurement error that alters the dependence structure of the process. In this work we propose methods to estimate the trend in the cases of COVID-19, controlling for the presence of measurement error. This decomposition is presented in Bayesian time series and spatio-temporal models for counting processes with latent components, and compared to the empirical analysis based on moving averages. We applied time series decompositions for the total number of deaths in Brazil and for the states of São Paulo and Amazonas, and a spatio-temporal analysis for all occurrences of deaths at the state level in Brazil, using two alternative specifications with global and regional components.
估算与 COVID-19 大流行相关的病例和死亡发生模式是一个复杂的问题。病例的发病率呈现出很大的时空异质性,并且卫生部门采用的发生核算机制导致了测量误差过程,改变了过程的依赖结构。在这项工作中,我们提出了控制测量误差的情况下估算 COVID-19 病例趋势的方法。这种分解是在带有潜在成分的计数过程的贝叶斯时间序列和时空模型中呈现的,并与基于移动平均值的实证分析进行了比较。我们对巴西的总死亡人数以及圣保罗州和亚马逊州的死亡人数进行了时间序列分解,并对巴西各州的所有死亡事件进行了时空分析,使用了带有全局和区域成分的两种替代规范。