Suppr超能文献

基于统计的方法,用于揭示新冠疫情的实际传播趋势并纠正评估中因延迟导致的误差。

Statistically-based methodology for revealing real contagion trends and correcting delay-induced errors in the assessment of COVID-19 pandemic.

作者信息

Contreras Sebastián, Biron-Lattes Juan Pablo, Villavicencio H Andrés, Medina-Ortiz David, Llanovarced-Kawles Nyna, Olivera-Nappa Álvaro

机构信息

Laboratory for Rheology and Fluid Dynamics, Universidad de Chile, Beauchef 850, Santiago 8370448, Chile.

Centre for Biotechnology and Bioengineering, Universidad de Chile, Beauchef 851, Santiago 8370448, Chile.

出版信息

Chaos Solitons Fractals. 2020 Oct;139:110087. doi: 10.1016/j.chaos.2020.110087. Epub 2020 Jul 3.

Abstract

COVID-19 pandemic has reshaped our world in a timescale much shorter than what we can understand. Particularities of SARS-CoV-2, such as its persistence in surfaces and the lack of a curative treatment or vaccine against COVID-19, have pushed authorities to apply restrictive policies to control its spreading. As data drove most of the decisions made in this global contingency, their quality is a critical variable for decision-making actors, and therefore should be carefully curated. In this work, we analyze the sources of error in typically reported epidemiological variables and usual tests used for diagnosis, and their impact on our understanding of COVID-19 spreading dynamics. We address the existence of different delays in the report of new cases, induced by the incubation time of the virus and testing-diagnosis time gaps, and other error sources related to the sensitivity/specificity of the tests used to diagnose COVID-19. Using a statistically-based algorithm, we perform a temporal reclassification of cases to avoid delay-induced errors, building up new epidemiologic curves centered in the day where the contagion effectively occurred. We also statistically enhance the robustness behind the discharge/recovery clinical criteria in the absence of a direct test, which is typically the case of non-first world countries, where the limited testing capabilities are fully dedicated to the evaluation of new cases. Finally, we applied our methodology to assess the evolution of the pandemic in Chile through the Effective Reproduction Number , identifying different moments in which data was misleading governmental actions. In doing so, we aim to raise public awareness of the need for proper data reporting and processing protocols for epidemiological modelling and predictions.

摘要

新冠疫情在短得超乎我们理解的时间尺度内重塑了我们的世界。严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的特性,比如它在物体表面的持久性以及缺乏针对新冠的治愈性疗法或疫苗,促使当局实施限制性政策来控制其传播。由于数据驱动了这场全球突发事件中的大多数决策,数据质量对于决策制定者而言是一个关键变量,因此应该仔细筛选。在这项工作中,我们分析了典型报告的流行病学变量和用于诊断的常规检测中的误差来源,以及它们对我们理解新冠传播动态的影响。我们探讨了由病毒潜伏期和检测-诊断时间间隔导致的新病例报告中的不同延迟的存在,以及与用于诊断新冠的检测的敏感性/特异性相关的其他误差来源。使用基于统计的算法,我们对病例进行时间重新分类以避免延迟导致的误差,构建以感染实际发生日期为中心的新的流行病学曲线。在没有直接检测的情况下,我们还从统计学上增强了出院/康复临床标准背后的稳健性,在非第一世界国家通常就是这种情况,那里有限的检测能力完全用于评估新病例。最后,我们应用我们的方法通过有效繁殖数来评估智利疫情的演变,识别出数据误导政府行动的不同时刻。在此过程中,我们旨在提高公众对为流行病学建模和预测制定适当数据报告和处理协议的必要性的认识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9c1/7341964/3496e82ae059/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验