Suppr超能文献

人源钠通道 Nav1.4 失活状态下局部麻醉药和抗癫痫药物结合的差异。

Differences in local anaesthetic and antiepileptic binding in the inactivated state of human sodium channel Nav1.4.

机构信息

Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia.

Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia.

出版信息

Biophys J. 2021 Dec 21;120(24):5553-5563. doi: 10.1016/j.bpj.2021.11.014. Epub 2021 Nov 11.

Abstract

Voltage-gated sodium channels play a vital role in nerve and muscle cells, enabling them to encode and transmit electrical signals. Currently, there exist several classes of drugs that aim to inhibit these channels for therapeutic purposes, including local anesthetics, antiepileptics and antiarrhythmics. However, sodium-channel-inhibiting drugs lack subtype specificity; instead, they inhibit all sodium channels in the human body. Improving understanding of the mechanisms of binding of existing nonselective drugs is important in providing insight into how subtype-selective drugs could be developed. This study used molecular dynamics simulations to investigate the binding of the antiepileptics carbamazepine and lamotrigine and the local anesthetic lidocaine in neutral and charged states to the recently resolved human Nav1.4 channel. Replica exchange solute tempering was used to enable greater sampling of each compound within the pore. It was found that all four compounds show similarities in their binding sites within the pore. However, the positions of the carbamazepine and lamotrigine did not occlude the center of the pore but preferentially bound to homologous domain DII and DIII. The charged and neutral forms of lidocaine positioned themselves more centrally in the pore, with more common interactions with DIV. The best localized binding site was for charged lidocaine, whose aromatic moiety interacted with Y1593, whereas the amine projected toward the selectivity filter. Comparisons with our previous simulations and published structures highlight potential differences between tonic and use-dependent block related to conformational changes occurring in the pore.

摘要

电压门控钠离子通道在神经和肌肉细胞中起着至关重要的作用,使它们能够编码和传输电信号。目前,有几类药物旨在抑制这些通道以达到治疗目的,包括局部麻醉剂、抗癫痫药和抗心律失常药。然而,钠离子通道抑制剂缺乏亚型特异性;相反,它们抑制了人体所有的钠离子通道。提高对现有非选择性药物结合机制的理解,对于了解如何开发亚型选择性药物非常重要。本研究使用分子动力学模拟研究了抗癫痫药卡马西平和拉莫三嗪以及局部麻醉剂利多卡因在中性和带电状态下与最近解析的人源 Nav1.4 通道的结合。复制交换溶剂调温用于在孔内对每个化合物进行更大程度的采样。研究发现,所有四种化合物在孔内的结合部位都存在相似性。然而,卡马西平和拉莫三嗪的位置并没有阻塞孔的中心,而是优先与同源域 DII 和 DIII 结合。带电和中性形式的利多卡因在孔内的位置更居中,与 DIV 的相互作用更为常见。定位最准确的结合部位是带电荷的利多卡因,其芳基部分与 Y1593 相互作用,而胺基则朝向选择性过滤器。与我们之前的模拟和已发表的结构进行比较,突出了与通道中发生的构象变化相关的紧张性和使用依赖性阻滞之间的潜在差异。

相似文献

1
Differences in local anaesthetic and antiepileptic binding in the inactivated state of human sodium channel Nav1.4.
Biophys J. 2021 Dec 21;120(24):5553-5563. doi: 10.1016/j.bpj.2021.11.014. Epub 2021 Nov 11.
2
Mechanism of sodium channel block by local anesthetics, antiarrhythmics, and anticonvulsants.
J Gen Physiol. 2017 Apr 3;149(4):465-481. doi: 10.1085/jgp.201611668. Epub 2017 Mar 3.
3
Charge at the lidocaine binding site residue Phe-1759 affects permeation in human cardiac voltage-gated sodium channels.
J Physiol. 2007 Jun 1;581(Pt 2):741-55. doi: 10.1113/jphysiol.2007.130161. Epub 2007 Mar 15.
5
Outward stabilization of the S4 segments in domains III and IV enhances lidocaine block of sodium channels.
J Physiol. 2007 Jul 1;582(Pt 1):317-34. doi: 10.1113/jphysiol.2007.134262. Epub 2007 May 17.
6
Protonation state of inhibitors determines interaction sites within voltage-gated sodium channels.
Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):E3135-E3144. doi: 10.1073/pnas.1714131115. Epub 2018 Feb 21.
7
Mefloquine inhibits voltage dependent Na1.4 channel by overlapping the local anaesthetic binding site.
Eur J Pharmacol. 2017 Feb 5;796:215-223. doi: 10.1016/j.ejphar.2017.01.002. Epub 2017 Jan 3.
8
Local anaesthetic block of sodium channels: raising the barrier.
J Physiol. 2007 Jun 1;581(Pt 2):423. doi: 10.1113/jphysiol.2007.133637. Epub 2007 Apr 5.
9
Electrostatic contributions of aromatic residues in the local anesthetic receptor of voltage-gated sodium channels.
Circ Res. 2008 Jan 4;102(1):86-94. doi: 10.1161/CIRCRESAHA.107.160663. Epub 2007 Oct 25.
10
Sodium channel selectivity filter regulates antiarrhythmic drug binding.
Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):14126-31. doi: 10.1073/pnas.94.25.14126.

引用本文的文献

2
Drugs exhibit diverse binding modes and access routes in the Nav1.5 cardiac sodium channel pore.
J Gen Physiol. 2025 Mar 3;157(2). doi: 10.1085/jgp.202413658. Epub 2025 Jan 7.
4
Functional effects of drugs and toxins interacting with Na1.4.
Front Pharmacol. 2024 Apr 25;15:1378315. doi: 10.3389/fphar.2024.1378315. eCollection 2024.
5
Sodium Channels and Local Anesthetics-Old Friends With New Perspectives.
Front Pharmacol. 2022 Mar 28;13:837088. doi: 10.3389/fphar.2022.837088. eCollection 2022.
6
Characterizing fenestration size in sodium channel subtypes and their accessibility to inhibitors.
Biophys J. 2022 Jan 18;121(2):193-206. doi: 10.1016/j.bpj.2021.12.025. Epub 2021 Dec 24.

本文引用的文献

1
Comparative structural analysis of human Na1.1 and Na1.5 reveals mutational hotspots for sodium channelopathies.
Proc Natl Acad Sci U S A. 2021 Mar 16;118(11). doi: 10.1073/pnas.2100066118.
3
Structural Basis for Pore Blockade of the Human Cardiac Sodium Channel Na 1.5 by the Antiarrhythmic Drug Quinidine*.
Angew Chem Int Ed Engl. 2021 May 10;60(20):11474-11480. doi: 10.1002/anie.202102196. Epub 2021 Apr 6.
4
Binding of azobenzene and p-diaminoazobenzene to the human voltage-gated sodium channel Na1.4.
Phys Chem Chem Phys. 2021 Feb 7;23(5):3552-3564. doi: 10.1039/d0cp06140a. Epub 2021 Jan 29.
5
Structure of the Cardiac Sodium Channel.
Cell. 2020 Jan 9;180(1):122-134.e10. doi: 10.1016/j.cell.2019.11.041. Epub 2019 Dec 19.
6
Structures of human Na1.7 channel in complex with auxiliary subunits and animal toxins.
Science. 2019 Mar 22;363(6433):1303-1308. doi: 10.1126/science.aaw2493. Epub 2019 Feb 14.
7
Molecular basis for pore blockade of human Na channel Na1.2 by the μ-conotoxin KIIIA.
Science. 2019 Mar 22;363(6433):1309-1313. doi: 10.1126/science.aaw2999. Epub 2019 Feb 14.
8
Structural basis of α-scorpion toxin action on Na channels.
Science. 2019 Mar 22;363(6433). doi: 10.1126/science.aav8573. Epub 2019 Feb 7.
9
Structural basis for antiarrhythmic drug interactions with the human cardiac sodium channel.
Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):2945-2954. doi: 10.1073/pnas.1817446116. Epub 2019 Feb 6.
10
Structural Basis of Nav1.7 Inhibition by a Gating-Modifier Spider Toxin.
Cell. 2019 Feb 7;176(4):702-715.e14. doi: 10.1016/j.cell.2018.12.018. Epub 2019 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验