Suppr超能文献

三维生物打印具有临床相关尺寸的气管模拟细胞构建体。

3D bioprinting of a trachea-mimetic cellular construct of a clinically relevant size.

机构信息

Wallace H. Coulter Department of Biomedical Engineering and Center for 3D Medical Fabrication, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA.

Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea.

出版信息

Biomaterials. 2021 Dec;279:121246. doi: 10.1016/j.biomaterials.2021.121246. Epub 2021 Nov 10.

Abstract

Despite notable advances in extrusion-based 3D bioprinting, it remains a challenge to create a clinically-sized cellular construct using extrusion-based 3D printing due to long printing times adversely affecting cell viability and functionality. Here, we present an advanced extrusion-based 3D bioprinting strategy composed of a two-step printing process to facilitate creation of a trachea-mimetic cellular construct of clinically relevant size. A porous bellows framework is first printed using typical extrusion-based 3D printing. Selective printing of cellular components, such as cartilage rings and epithelium lining, is then performed on the outer grooves and inner surface of the bellows framework by a rotational printing process. With this strategy, 3D bioprinting of a trachea-mimetic cellular construct of clinically relevant size is achieved in significantly less total printing time compared to a typical extrusion-based 3D bioprinting strategy which requires printing of an additional sacrificial material. Tracheal cartilage formation was successfully demonstrated in a nude mouse model through a subcutaneous implantation study of trachea-mimetic cellular constructs wrapped with a sinusoidal-patterned tubular mesh preventing rapid resorption of cartilage rings in vivo. This two-step 3D bioprinting for a trachea-mimetic cellular construct of clinically relevant size can provide a fundamental step towards clinical translation of 3D bioprinting based tracheal reconstruction.

摘要

尽管基于挤出的 3D 生物打印技术取得了显著进展,但由于打印时间长会对细胞活力和功能产生不利影响,因此使用基于挤出的 3D 打印技术来创建临床规模的细胞构建体仍然是一个挑战。在这里,我们提出了一种先进的基于挤出的 3D 生物打印策略,该策略由两步打印过程组成,以方便创建具有临床相关尺寸的气管模拟细胞构建体。首先使用典型的基于挤出的 3D 打印技术打印出多孔波纹管框架。然后,通过旋转打印工艺在波纹管框架的外槽和内表面上选择性地打印细胞成分,如软骨环和上皮衬里。通过这种策略,与需要打印额外牺牲材料的典型基于挤出的 3D 生物打印策略相比,可显著减少总打印时间来实现具有临床相关尺寸的气管模拟细胞构建体的 3D 生物打印。通过在具有防止软骨环在体内快速吸收的正弦图案管状网格包裹的气管模拟细胞构建体的皮下植入研究,在裸鼠模型中成功地证明了气管软骨的形成。这种两步法用于具有临床相关尺寸的气管模拟细胞构建体的 3D 生物打印可以为基于 3D 生物打印的气管重建的临床转化提供一个基本步骤。

相似文献

1
3D bioprinting of a trachea-mimetic cellular construct of a clinically relevant size.
Biomaterials. 2021 Dec;279:121246. doi: 10.1016/j.biomaterials.2021.121246. Epub 2021 Nov 10.
2
Functional Trachea Reconstruction Using 3D-Bioprinted Native-Like Tissue Architecture Based on Designable Tissue-Specific Bioinks.
Adv Sci (Weinh). 2022 Oct;9(29):e2202181. doi: 10.1002/advs.202202181. Epub 2022 Jul 26.
3
Multi-material 3D bioprinting of porous constructs for cartilage regeneration.
Mater Sci Eng C Mater Biol Appl. 2020 Apr;109:110578. doi: 10.1016/j.msec.2019.110578. Epub 2019 Dec 20.
5
Low-Temperature Three-Dimensional Printing of Tissue Cartilage Engineered with Gelatin Methacrylamide.
Tissue Eng Part C Methods. 2020 Jun;26(6):306-316. doi: 10.1089/ten.TEC.2020.0053.
6
3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering.
Nanotechnology. 2018 May 4;29(18):185101. doi: 10.1088/1361-6528/aaafa1. Epub 2018 Feb 15.
7
Instant trachea reconstruction using 3D-bioprinted -shape biomimetic trachea based on tissue-specific matrix hydrogels.
Bioact Mater. 2023 Sep 29;32:52-65. doi: 10.1016/j.bioactmat.2023.09.011. eCollection 2024 Feb.
8
Replacement of Rat Tracheas by Layered, Trachea-Like, Scaffold-Free Structures of Human Cells Using a Bio-3D Printing System.
Adv Healthc Mater. 2019 Apr;8(7):e1800983. doi: 10.1002/adhm.201800983. Epub 2019 Jan 11.
10
3D bioprinting of a stem cell-laden, multi-material tubular composite: An approach for spinal cord repair.
Mater Sci Eng C Mater Biol Appl. 2021 Jan;120:111707. doi: 10.1016/j.msec.2020.111707. Epub 2020 Nov 6.

引用本文的文献

1
Evaluation Strategies for Tissue-engineered Tracheas: From Characterization to Assessment.
In Vivo. 2025 Sep-Oct;39(5):2490-2504. doi: 10.21873/invivo.14052.
2
Organic and Synthetic Substitutes in Tracheal Reconstruction: A Scoping Review (2015-2025).
Bioengineering (Basel). 2025 Jun 27;12(7):704. doi: 10.3390/bioengineering12070704.
3
In situ vascularization and epithelialization of segmental bioengineered trachea based on marrow-derived stem/progenitor cells.
Mater Today Bio. 2025 Jun 14;33:101990. doi: 10.1016/j.mtbio.2025.101990. eCollection 2025 Aug.
5
Bioengineered tracheal graft with enhanced vascularization and mechanical stability for functional airway reconstruction.
Regen Ther. 2025 Apr 9;29:364-380. doi: 10.1016/j.reth.2025.03.016. eCollection 2025 Jun.
7
3D bioprinting of the airways and lungs for applications in tissue engineering and in vitro models.
J Tissue Eng. 2024 Dec 21;15:20417314241309183. doi: 10.1177/20417314241309183. eCollection 2024 Jan-Dec.
8
Understanding the cellular dynamics, engineering perspectives and translation prospects in bioprinting epithelial tissues.
Bioact Mater. 2024 Sep 24;43:195-224. doi: 10.1016/j.bioactmat.2024.09.025. eCollection 2025 Jan.
9
Revolutionizing tracheal reconstruction: innovations in vascularized composite allograft transplantation.
Front Bioeng Biotechnol. 2024 Aug 21;12:1452780. doi: 10.3389/fbioe.2024.1452780. eCollection 2024.
10
Recent advances in 3D bioprinted cartilage-mimicking constructs for applications in tissue engineering.
Mater Today Bio. 2023 Nov 17;23:100870. doi: 10.1016/j.mtbio.2023.100870. eCollection 2023 Dec.

本文引用的文献

1
Development of a radiopaque, long-term drug eluting bioresorbable stent for the femoral-iliac artery.
RSC Adv. 2019 Oct 28;9(59):34636-34641. doi: 10.1039/c9ra06179g. eCollection 2019 Oct 23.
3
Extrusion 3D Printing of Polymeric Materials with Advanced Properties.
Adv Sci (Weinh). 2020 Aug 5;7(17):2001379. doi: 10.1002/advs.202001379. eCollection 2020 Sep.
4
Application of purified porcine collagen in patients with chronic refractory musculoskeletal pain.
Korean J Pain. 2020 Oct 1;33(4):395-399. doi: 10.3344/kjp.2020.33.4.395.
5
Enhanced stem cell retention and antioxidative protection with injectable, ROS-degradable PEG hydrogels.
Biomaterials. 2020 Dec;263:120377. doi: 10.1016/j.biomaterials.2020.120377. Epub 2020 Sep 9.
6
The Influence of Printing Parameters and Cell Density on Bioink Printing Outcomes.
Tissue Eng Part A. 2020 Dec;26(23-24):1349-1358. doi: 10.1089/ten.TEA.2020.0210. Epub 2020 Oct 14.
7
Decellularized Extracellular Matrix-based Bioinks for Engineering Tissue- and Organ-specific Microenvironments.
Chem Rev. 2020 Oct 14;120(19):10608-10661. doi: 10.1021/acs.chemrev.9b00808. Epub 2020 Jul 31.
8
Biomedical grafts for tracheal tissue repairing and regeneration "Tracheal tissue engineering: an overview".
J Tissue Eng Regen Med. 2020 May;14(5):653-672. doi: 10.1002/term.3019. Epub 2020 Mar 19.
9
Bioprinted trachea constructs with patient-matched design, mechanical and biological properties.
Biofabrication. 2019 Dec 31;12(1):015022. doi: 10.1088/1758-5090/ab5354.
10
Recent Advances in Enabling Technologies in 3D Printing for Precision Medicine.
Adv Mater. 2020 Apr;32(13):e1902516. doi: 10.1002/adma.201902516. Epub 2019 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验