Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.
Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA.
Tissue Barriers. 2022 Jul 3;10(3):2000299. doi: 10.1080/21688370.2021.2000299. Epub 2021 Nov 14.
The gut-brain axis hypothesis suggests that interactions in the intestinal milieu are critically involved in regulating brain function. Several studies point to a gut-microbiota-brain connection linking an impaired intestinal barrier and altered gut microbiota composition to neurological disorders involving neuroinflammation. Increased gut permeability allows luminal antigens to cross the gut epithelium, and via the blood stream and an impaired blood-brain barrier (BBB) enters the brain impacting its function. Pre-haptoglobin 2 (pHP2), the precursor protein to mature HP2, is the first characterized member of the zonulin family of structurally related proteins. pHP 2 has been identified in humans as the thus far only endogenous regulator of epithelial and endothelial tight junctions (TJs). We have leveraged the Zonulin-transgenic mouse (Ztm) that expresses a murine pHP2 (zonulin) to determine the role of increased gut permeability and its synergy with a dysbiotic intestinal microbiota on brain function and behavior. Here we show that Ztm mice display sex-dependent behavioral abnormalities accompanied by altered gene expression of BBB TJs and increased expression of brain inflammatory genes. Antibiotic depletion of the gut microbiota in Ztm mice downregulated brain inflammatory markers ameliorating some anxiety-like behavior. Overall, we show that zonulin-dependent alterations in gut permeability and dysbiosis of the gut microbiota are associated with an altered BBB integrity, neuroinflammation, and behavioral changes that are partially ameliorated by microbiota depletion. Our results suggest the Ztm model as a tool for the study of the cross-talk between the microbiome/gut and the brain in the context of neurobehavioral/neuroinflammatory disorders.
肠脑轴假说表明,肠道环境中的相互作用对于调节大脑功能至关重要。多项研究表明,肠道微生物群-大脑连接将受损的肠道屏障和改变的肠道微生物群组成与涉及神经炎症的神经紊乱联系起来。肠道通透性增加允许腔抗原穿过肠上皮细胞,并通过血流和受损的血脑屏障(BBB)进入大脑,影响其功能。前触珠蛋白 2(pHP2)是成熟 HP2 的前体蛋白,是结构相关蛋白家族中第一个被描述的紧密连接蛋白(TJs)的内源性调节剂。在人类中,pHP2 被鉴定为迄今为止唯一的上皮细胞和内皮细胞紧密连接(TJ)的内源性调节剂。我们利用表达鼠 pHP2(紧密连接蛋白)的紧密连接蛋白转基因小鼠(Ztm)来确定肠道通透性增加及其与肠道微生物群失调的协同作用对大脑功能和行为的影响。在这里,我们显示 Ztm 小鼠表现出性别依赖性的行为异常,伴随着 BBB TJ 的基因表达改变和大脑炎症基因的表达增加。Ztm 小鼠的肠道微生物群抗生素耗竭下调了大脑炎症标志物,改善了一些类似焦虑的行为。总的来说,我们表明,紧密连接蛋白依赖性的肠道通透性改变和肠道微生物群失调与 BBB 完整性改变、神经炎症和行为变化有关,而肠道微生物群耗竭部分改善了这些变化。我们的结果表明,Ztm 模型是研究微生物群/肠道和大脑在神经行为/神经炎症障碍背景下相互作用的工具。