Suppr超能文献

一种用于估算南非工业化高草原地区环境颗粒物浓度的机器学习模型。

A machine learning model to estimate ambient PM concentrations in industrialized highveld region of South Africa.

作者信息

Zhang Danlu, Du Linlin, Wang Wenhao, Zhu Qingyang, Bi Jianzhao, Scovronick Noah, Naidoo Mogesh, Garland Rebecca M, Liu Yang

机构信息

Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.

Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.

出版信息

Remote Sens Environ. 2021 Dec 1;266. doi: 10.1016/j.rse.2021.112713. Epub 2021 Sep 23.

Abstract

Exposure to fine particulate matter (PM) has been linked to a substantial disease burden globally, yet little has been done to estimate the population health risks of PM in South Africa due to the lack of high-resolution PM exposure estimates. We developed a random forest model to estimate daily PM concentrations at 1 km resolution in and around industrialized Gauteng Province, South Africa, by combining satellite aerosol optical depth (AOD), meteorology, land use, and socioeconomic data. We then compared PM concentrations in the study domain before and after the implementation of the new national air quality standards. We aimed to test whether machine learning models are suitable for regions with sparse ground observations such as South Africa and which predictors played important roles in PM modeling. The cross-validation R and Root Mean Square Error of our model was 0.80 and 9.40 μg/m, respectively. Satellite AOD, seasonal indicator, total precipitation, and population were among the most important predictors. Model-estimated PM levels successfully captured the temporal pattern recorded by ground observations. Spatially, the highest annual PM concentration appeared in central and northern Gauteng, including northern Johannesburg and the city of Tshwane. Since the 2016 changes in national PM standards, PM concentrations have decreased in most of our study region, although levels in Johannesburg and its surrounding areas have remained relatively constant. This is anadvanced PM model for South Africa with high prediction accuracy at the daily level and at a relatively high spatial resolution. Our study provided a reference for predictor selection, and our results can be used for a variety of purposes, including epidemiological research, burden of disease assessments, and policy evaluation.

摘要

在全球范围内,接触细颗粒物(PM)已与巨大的疾病负担相关联,但由于缺乏高分辨率的PM暴露估计,南非在估算PM对人群健康风险方面几乎没有开展相关工作。我们开发了一种随机森林模型,通过结合卫星气溶胶光学厚度(AOD)、气象、土地利用和社会经济数据,来估算南非工业化程度较高的豪登省及其周边地区1公里分辨率下的每日PM浓度。然后,我们比较了新的国家空气质量标准实施前后研究区域内的PM浓度。我们旨在测试机器学习模型是否适用于像南非这样地面观测数据稀少的地区,以及哪些预测因子在PM建模中发挥了重要作用。我们模型的交叉验证R值和均方根误差分别为0.80和9.40μg/m。卫星AOD、季节指标、总降水量和人口是最重要的预测因子之一。模型估计的PM水平成功捕捉到了地面观测记录的时间模式。在空间上,年度PM浓度最高的区域出现在豪登省中部和北部,包括约翰内斯堡北部和茨瓦内市。自2016年国家PM标准变更以来,我们研究区域的大部分地区PM浓度有所下降,不过约翰内斯堡及其周边地区的浓度仍相对稳定。这是一个针对南非的先进PM模型,在日尺度和相对较高的空间分辨率下具有较高的预测精度。我们的研究为预测因子选择提供了参考,我们的结果可用于多种目的,包括流行病学研究、疾病负担评估和政策评估。

相似文献

1
A machine learning model to estimate ambient PM concentrations in industrialized highveld region of South Africa.
Remote Sens Environ. 2021 Dec 1;266. doi: 10.1016/j.rse.2021.112713. Epub 2021 Sep 23.
3
Developing an Advanced PM Exposure Model in Lima, Peru.
Remote Sens (Basel). 2019 Mar 2;11(6). doi: 10.3390/rs11060641. Epub 2019 Mar 16.
6
Spatiotemporal trends of PM concentrations in central China from 2003 to 2018 based on MAIAC-derived high-resolution data.
Environ Int. 2020 Apr;137:105536. doi: 10.1016/j.envint.2020.105536. Epub 2020 Feb 6.
7
A land use regression model using machine learning and locally developed low cost particulate matter sensors in Uganda.
Environ Res. 2021 Aug;199:111352. doi: 10.1016/j.envres.2021.111352. Epub 2021 May 24.
9
Prediction of daily mean and one-hour maximum PM concentrations and applications in Central Mexico using satellite-based machine-learning models.
J Expo Sci Environ Epidemiol. 2022 Nov;32(6):917-925. doi: 10.1038/s41370-022-00471-4. Epub 2022 Sep 10.
10
Estimating PM with high-resolution 1-km AOD data and an improved machine learning model over Shenzhen, China.
Sci Total Environ. 2020 Dec 1;746:141093. doi: 10.1016/j.scitotenv.2020.141093. Epub 2020 Jul 21.

引用本文的文献

1
Using Machine Learning to Predict Resilience Among Nurses in a South African Setting.
Int J Environ Res Public Health. 2025 Jun 24;22(7):996. doi: 10.3390/ijerph22070996.
2
Wildfires are associated with increased emergency department visits for anxiety disorders in the western United States.
Nat Ment Health. 2024 Apr;2(4):379-387. doi: 10.1038/s44220-024-00210-8. Epub 2024 Feb 15.
3
Prediction of atmospheric PM level by machine learning techniques in Isfahan, Iran.
Sci Rep. 2024 Jan 24;14(1):2109. doi: 10.1038/s41598-024-52617-z.
4
Machine Learning Research Trends in Africa: A 30 Years Overview with Bibliometric Analysis Review.
Arch Comput Methods Eng. 2023 Apr 29:1-31. doi: 10.1007/s11831-023-09930-z.
5
Effects of short-term PM exposure on blood lipids among 197,957 people in eastern China.
Sci Rep. 2023 Mar 18;13(1):4505. doi: 10.1038/s41598-023-31513-y.

本文引用的文献

1
Review: Strategies for using satellite-based products in modeling PM and short-term pollution episodes.
Environ Int. 2020 Nov;144:106057. doi: 10.1016/j.envint.2020.106057. Epub 2020 Sep 1.
2
Spatiotemporal Imputation of MAIAC AOD Using Deep Learning with Downscaling.
Remote Sens Environ. 2020 Feb;237. doi: 10.1016/j.rse.2019.111584. Epub 2019 Dec 10.
3
Air Quality and Health Impact of Future Fossil Fuel Use for Electricity Generation and Transport in Africa.
Environ Sci Technol. 2019 Nov 19;53(22):13524-13534. doi: 10.1021/acs.est.9b04958. Epub 2019 Nov 5.
4
Ambient Particulate Air Pollution and Daily Mortality in 652 Cities.
N Engl J Med. 2019 Aug 22;381(8):705-715. doi: 10.1056/NEJMoa1817364.
5
Public health benefits of reducing exposure to ambient fine particulate matter in South Africa.
Sci Total Environ. 2019 Sep 20;684:610-620. doi: 10.1016/j.scitotenv.2019.05.355. Epub 2019 May 25.
6
Ambient air pollution and health in Sub-Saharan Africa: Current evidence, perspectives and a call to action.
Environ Res. 2019 Jun;173:174-188. doi: 10.1016/j.envres.2019.03.029. Epub 2019 Mar 16.
7
The sensitivity of satellite-based PM estimates to its inputs: Implications to model development in data-poor regions.
Environ Int. 2018 Dec;121(Pt 1):550-560. doi: 10.1016/j.envint.2018.09.051. Epub 2018 Oct 6.
8
Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter.
Proc Natl Acad Sci U S A. 2018 Sep 18;115(38):9592-9597. doi: 10.1073/pnas.1803222115. Epub 2018 Sep 4.
10
Predicting Daily Urban Fine Particulate Matter Concentrations Using a Random Forest Model.
Environ Sci Technol. 2018 Apr 3;52(7):4173-4179. doi: 10.1021/acs.est.7b05381. Epub 2018 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验