Division of Biostatistics and Epidemiology , Cincinnati Children's Hospital Medical Center , Cincinnati , Ohio 45229 , United States.
Department of Pediatrics , University of Cincinnati , Cincinnati , Ohio 45267 , United States.
Environ Sci Technol. 2018 Apr 3;52(7):4173-4179. doi: 10.1021/acs.est.7b05381. Epub 2018 Mar 14.
The short-term and acute health effects of fine particulate matter less than 2.5 μm (PM) have highlighted the need for exposure assessment models with high spatiotemporal resolution. Here, we utilize satellite, meteorologic, atmospheric, and land-use data to train a random forest model capable of accurately predicting daily PM concentrations at a resolution of 1 × 1 km throughout an urban area encompassing seven counties. Unlike previous models based on aerosol optical density (AOD), we show that the missingness of AOD is an effective predictor of ground-level PM and create an ensemble model that explicitly deals with AOD missingness and is capable of predicting with complete spatial and temporal coverage of the study domain. Our model performed well with an overall cross-validated root mean squared error (RMSE) of 2.22 μg/m and a cross-validated R of 0.91. We illustrate the daily changing spatial patterns of PM concentrations across our urban study area made possible by our accurate, high-resolution model. The model will facilitate high-resolution assessment of both long-term and acute PM exposures in order to quantify their associations with related health outcomes.
小于 2.5μm(PM)的细颗粒物的短期和急性健康影响突出了需要具有高时空分辨率的暴露评估模型。在这里,我们利用卫星、气象、大气和土地利用数据来训练一个随机森林模型,该模型能够以 1×1km 的分辨率准确预测覆盖七个县的城市地区的每日 PM 浓度。与以前基于气溶胶光学密度 (AOD) 的模型不同,我们表明 AOD 的缺失是地面 PM 的有效预测因子,并创建了一个集成模型,该模型明确处理 AOD 的缺失并能够以研究区域的完整空间和时间覆盖范围进行预测。我们的模型表现良好,整体交叉验证均方根误差 (RMSE) 为 2.22μg/m,交叉验证 R 为 0.91。我们通过我们准确的高分辨率模型说明了我们城市研究区域内 PM 浓度的每日变化空间模式。该模型将有助于对长期和急性 PM 暴露进行高分辨率评估,以便量化它们与相关健康结果的关联。