Suppr超能文献

利用质量感知特征学习预测高校官方账号的页面浏览量

Learning to Predict Page View on College Official Accounts With Quality-Aware Features.

作者信息

Yu Yibing, Shi Shuang, Wang Yifei, Lian Xinkang, Liu Jing, Lei Fei

机构信息

The Communist Youth League Committee, Beijing University of Technology, Beijing, China.

School of Economics and Management, Beijing University of Technology, Beijing, China.

出版信息

Front Neurosci. 2021 Oct 28;15:766396. doi: 10.3389/fnins.2021.766396. eCollection 2021.

Abstract

At present, most of departments in colleges have their own official accounts, which have become the primary channel for announcements and news. In the official accounts, the popularity of articles is influenced by many different factors, such as the content of articles, the aesthetics of the layout, and so on. This paper mainly studies how to learn a computational model for predicting page view on college official accounts with quality-aware features extracted from pictures. First, we built a new picture database by collecting 1,000 pictures from the official accounts of nine well-known universities in the city of Beijing. Then, we proposed a new model for predicting page view by using a selective ensemble technology to fuse three sets of quality-aware features that could represent how a picture looks. Experimental results show that the proposed model has achieved competitive performance against state-of-the-art relevant models on the task for inferring page view from pictures on college official accounts.

摘要

目前,高校的大多数部门都有自己的官方账号,这些账号已成为公告和新闻的主要渠道。在官方账号中,文章的受欢迎程度受许多不同因素影响,如文章内容、版面美观度等。本文主要研究如何学习一种计算模型,用于根据从图片中提取的质量感知特征来预测高校官方账号文章的浏览量。首先,我们通过从北京市九所知名大学的官方账号收集1000张图片,构建了一个新的图片数据库。然后,我们提出了一种新的预测浏览量的模型,该模型使用选择性集成技术融合三组能够表征图片外观的质量感知特征。实验结果表明,在从高校官方账号图片推断浏览量的任务中,所提出的模型相对于最先进的相关模型取得了具有竞争力的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f793/8581399/6098596f135d/fnins-15-766396-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验