IEEE Trans Image Process. 2019 Apr;28(4):1866-1881. doi: 10.1109/TIP.2018.2881828. Epub 2018 Nov 19.
A challenging problem in the no-reference quality assessment of multiply distorted stereoscopic images (MDSIs) is to simulate the monocular and binocular visual properties under a mixed type of distortions. Due to the joint effects of multiple distortions in MDSIs, the underlying monocular and binocular visual mechanisms have different manifestations with those of singly distorted stereoscopic images (SDSIs). This paper presents a unified no-reference quality evaluator for SDSIs and MDSIs by learning monocular and binocular local visual primitives (MB-LVPs). The main idea is to learn MB-LVPs to characterize the local receptive field properties of the visual cortex in response to SDSIs and MDSIs. Furthermore, we also consider that the learning of primitives should be performed in a task-driven manner. For this, two penalty terms including reconstruction error and quality inconsistency are jointly minimized within a supervised dictionary learning framework, generating a set of quality-oriented MB-LVPs for each single and multiple distortion modality. Given an input stereoscopic image, feature encoding is performed using the learned MB-LVPs as codebooks, resulting in the corresponding monocular and binocular responses. Finally, responses across all the modalities are fused with probabilistic weights which are determined by the modality-specific sparse reconstruction errors, yielding the final monocular and binocular features for quality regression. The superiority of our method has been verified on several SDSI and MDSI databases.
多失真立体图像(MDSI)无参考质量评估中的一个挑战性问题是模拟混合类型失真下的单目和双目视觉特性。由于 MDSI 中的多种失真的共同作用,潜在的单目和双目视觉机制与单一失真的立体图像(SDSI)的表现不同。本文通过学习单目和双目局部视觉基元(MB-LVPs),提出了一种用于 SDSI 和 MDSI 的统一无参考质量评估器。其主要思想是学习 MB-LVPs 来描述视觉皮层对 SDSI 和 MDSI 的局部感受野特性。此外,我们还认为基元的学习应该以任务驱动的方式进行。为此,在监督字典学习框架内,联合最小化重建误差和质量不一致性这两个惩罚项,为每种单一和多种失真模式生成一组面向质量的 MB-LVPs。给定一个输入立体图像,使用学习到的 MB-LVPs 作为码本来进行特征编码,从而得到相应的单目和双目响应。最后,通过模态特定的稀疏重建误差确定概率权重来融合所有模态的响应,从而得到用于质量回归的最终单目和双目特征。我们的方法在几个 SDSI 和 MDSI 数据库上得到了验证。