Suppr超能文献

使用机器学习预测心房颤动:综述

Prediction of Atrial Fibrillation Using Machine Learning: A Review.

作者信息

Tseng Andrew S, Noseworthy Peter A

机构信息

Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States.

出版信息

Front Physiol. 2021 Oct 28;12:752317. doi: 10.3389/fphys.2021.752317. eCollection 2021.

Abstract

There has been recent immense interest in the use of machine learning techniques in the prediction and screening of atrial fibrillation, a common rhythm disorder present with significant clinical implications primarily related to the risk of ischemic cerebrovascular events and heart failure. Prior to the advent of the application of artificial intelligence in clinical medicine, previous studies have enumerated multiple clinical risk factors that can predict the development of atrial fibrillation. These clinical parameters include previous diagnoses, laboratory data (e.g., cardiac and inflammatory biomarkers, etc.), imaging data (e.g., cardiac computed tomography, cardiac magnetic resonance imaging, echocardiography, etc.), and electrophysiological data. These data are readily available in the electronic health record and can be automatically queried by artificial intelligence algorithms. With the modern computational capabilities afforded by technological advancements in computing and artificial intelligence, we present the current state of machine learning methodologies in the prediction and screening of atrial fibrillation as well as the implications and future direction of this rapidly evolving field.

摘要

最近,机器学习技术在心房颤动的预测和筛查中的应用引起了极大关注。心房颤动是一种常见的心律失常,具有重大的临床意义,主要与缺血性脑血管事件和心力衰竭的风险相关。在人工智能应用于临床医学之前,先前的研究已经列举了多种可预测心房颤动发生的临床危险因素。这些临床参数包括既往诊断、实验室数据(如心脏和炎症生物标志物等)、影像学数据(如心脏计算机断层扫描、心脏磁共振成像、超声心动图等)以及电生理数据。这些数据在电子健康记录中很容易获取,并且可以由人工智能算法自动查询。随着计算和人工智能技术进步所提供的现代计算能力,我们介绍了机器学习方法在心房颤动预测和筛查中的现状,以及这个快速发展领域的意义和未来方向。

相似文献

1
Prediction of Atrial Fibrillation Using Machine Learning: A Review.使用机器学习预测心房颤动:综述
Front Physiol. 2021 Oct 28;12:752317. doi: 10.3389/fphys.2021.752317. eCollection 2021.
7
Machine learning in the detection and management of atrial fibrillation.机器学习在心房颤动的检测和管理中的应用。
Clin Res Cardiol. 2022 Sep;111(9):1010-1017. doi: 10.1007/s00392-022-02012-3. Epub 2022 Mar 30.
8

引用本文的文献

5
A predictive score for atrial fibrillation in poststroke patients.预测脑卒中后患者心房颤动的评分。
Arq Neuropsiquiatr. 2024 Oct;82(10):1-8. doi: 10.1055/s-0044-1788271. Epub 2024 Aug 15.
8
Fibrinaloid Microclots and Atrial Fibrillation.纤维蛋白样微血栓与心房颤动
Biomedicines. 2024 Apr 17;12(4):891. doi: 10.3390/biomedicines12040891.

本文引用的文献

7
How Will Machine Learning Inform the Clinical Care of Atrial Fibrillation?机器学习将如何为房颤的临床治疗提供信息?
Circ Res. 2020 Jun 19;127(1):155-169. doi: 10.1161/CIRCRESAHA.120.316401. Epub 2020 Jun 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验