Suppr超能文献

利用大型人群队列研究前列腺癌的免疫微环境和反应。

Immune Microenvironment and Response in Prostate Cancer Using Large Population Cohorts.

机构信息

The State Key Lab of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.

Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.

出版信息

Front Immunol. 2021 Oct 28;12:686809. doi: 10.3389/fimmu.2021.686809. eCollection 2021.

Abstract

Immune microenvironment of prostate cancer (PCa) is implicated in disease progression. However, previous studies have not fully explored PCa immune microenvironment. This study used ssGSEA algorithm to explore expression levels of 53 immune terms in a combined PCa cohort (eight cohorts; 1,597 samples). The top 10 immune terms were selected based on the random forest analysis and used for immune-related risk score (IRS) calculation. Furthermore, we explored differences in clinical and genomic features between high and low IRS groups. An IRS signature based on the 10 immune terms showed high prediction potential for PCa prognosis. Patients in the high IRS group showed significantly higher percentage of immunotherapy response factors, implying that IRS is effective in predicting immunotherapy response rate. Furthermore, consensus clustering was performed to separate the population into three IRSclusters with different clinical outcomes. Patients in IRScluster3 showed the worst prognosis and highest immunotherapy response rate. On the other hand, patients in IRScluster2 showed better prognosis and low immunotherapy response rate. In addition, , , , , , , , , , and genes were differentially expressed in the three IRSclusters. Furthermore, CMap analysis showed that five compounds targeted IRS signature, thioridazine, trifluoperazine, 0175029-0000, trichostatin A, and fluphenazine. In summary, immune characteristics of PCa tumor microenvironment was explored and an IRS signature was constructed based on 10 immune terms. Analysis showed that this signature is a useful tool for prognosis and prediction of immunotherapy response rate of PCa.

摘要

前列腺癌 (PCa) 的免疫微环境与疾病进展有关。然而,之前的研究并未充分探索 PCa 的免疫微环境。本研究使用 ssGSEA 算法在一个合并的 PCa 队列(八个队列;1597 个样本)中探索了 53 个免疫术语的表达水平。根据随机森林分析,选择前 10 个免疫术语,并用于计算免疫相关风险评分 (IRS)。此外,我们还探讨了高低 IRS 组之间临床和基因组特征的差异。基于这 10 个免疫术语的 IRS 标志物对 PCa 预后具有较高的预测潜力。IRS 较高组的患者表现出更高的免疫治疗反应因素比例,这表明 IRS 有效预测免疫治疗反应率。此外,进行共识聚类以将人群分为具有不同临床结局的三个 IRS 簇。IRScluster3 组的患者预后最差,免疫治疗反应率最高。另一方面,IRScluster2 组的患者预后较好,免疫治疗反应率较低。此外,在三个 IRS 簇中, 、 、 、 、 、 、 、 、 和 基因表达存在差异。此外,CMap 分析显示,五种化合物靶向 IRS 标志物,即硫利达嗪、三氟拉嗪、0175029-0000、曲古抑菌素 A 和氟奋乃静。总之,本研究探索了 PCa 肿瘤微环境的免疫特征,并构建了基于 10 个免疫术语的 IRS 标志物。分析表明,该标志物是预测 PCa 预后和免疫治疗反应率的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ed/8585452/90c56a00bbf0/fimmu-12-686809-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验