Perioperative Medical Big Data Research Group, Department of Anaesthesiology, 637250Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China.
Department of Anesthesiology, Pain and Perioperative Medicine, 191599First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Cancer Control. 2023 Jan-Dec;30:10732748231167958. doi: 10.1177/10732748231167958.
We tested the performance of general machine learning and joint machine learning algorithms in the classification of bone metastasis, in patients with lung adenocarcinoma.
We used R version 3.5.3 for statistical analysis of the general information, and Python to construct machine learning models.
We first used the average classifiers of the 4 machine learning algorithms to rank the features and the results showed that race, sex, whether they had surgery and marriage were the first 4 factors affecting bone metastasis. Machine learning results in the training group: for area under the curve (AUC), except for RF and LR, the AUC values of all machine learning classifiers were greater than .8, but the joint algorithm did not improve the AUC for any single machine learning algorithm. Among the results related to accuracy and precision, the accuracy of other machine learning classifiers except the RF algorithm was higher than 70%, and only the precision of the LGBM algorithm was higher than 70%. Machine learning results in the test group: Similarly, for areas under the curve (AUC), except RF and LR, the AUC values for all machine learning classifiers were greater than .8, but the joint algorithm did not improve the AUC value for any single machine learning algorithm. For accuracy, except for the RF algorithm, the accuracy of other machine learning classifiers was higher than 70%. The highest precision for the LGBM algorithm was .675.
The results of this concept verification study show that machine learning algorithm classifiers can distinguish the bone metastasis of patients with lung cancer. This will provide a new research idea for the future use of non-invasive technology to identify bone metastasis in lungcancer. However, more prospective multicenter cohort studies are needed.
我们测试了通用机器学习和联合机器学习算法在肺腺癌患者骨转移分类中的性能。
我们使用 R 版本 3.5.3 对一般信息进行统计分析,并使用 Python 构建机器学习模型。
我们首先使用 4 种机器学习算法的平均分类器对特征进行排序,结果表明,种族、性别、是否接受过手术和婚姻是影响骨转移的前 4 个因素。在训练组中,机器学习结果:对于曲线下面积(AUC),除了 RF 和 LR 之外,所有机器学习分类器的 AUC 值均大于.8,但联合算法并没有提高任何单一机器学习算法的 AUC 值。在与准确性和精度相关的结果中,除 RF 算法外,其他机器学习分类器的准确性均高于 70%,只有 LGBM 算法的精度高于 70%。在测试组中,机器学习结果:同样,对于曲线下面积(AUC),除了 RF 和 LR 之外,所有机器学习分类器的 AUC 值均大于.8,但联合算法并没有提高任何单一机器学习算法的 AUC 值。对于准确性,除了 RF 算法外,其他机器学习分类器的准确性均高于 70%。LGBM 算法的最高精度为.675。
这项概念验证研究的结果表明,机器学习算法分类器可以区分肺癌患者的骨转移。这将为未来利用非侵入性技术识别肺癌骨转移提供新的研究思路。然而,需要更多前瞻性多中心队列研究。