Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, USA.
The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Genet Epidemiol. 2022 Feb;46(1):3-16. doi: 10.1002/gepi.22436. Epub 2021 Nov 15.
Hematological measures are important intermediate clinical phenotypes for many acute and chronic diseases and are highly heritable. Although genome-wide association studies (GWAS) have identified thousands of loci containing trait-associated variants, the causal genes underlying these associations are often uncertain. To better understand the underlying genetic regulatory mechanisms, we performed a transcriptome-wide association study (TWAS) to systematically investigate the association between genetically predicted gene expression and hematological measures in 54,542 Europeans from the Genetic Epidemiology Research on Aging cohort. We found 239 significant gene-trait associations with hematological measures; we replicated 71 associations at p < 0.05 in a TWAS meta-analysis consisting of up to 35,900 Europeans from the Women's Health Initiative, Atherosclerosis Risk in Communities Study, and BioMe Biobank. Additionally, we attempted to refine this list of candidate genes by performing conditional analyses, adjusting for individual variants previously associated with hematological measures, and performed further fine-mapping of TWAS loci. To facilitate interpretation of our findings, we designed an R Shiny application to interactively visualize our TWAS results by integrating them with additional genetic data sources (GWAS, TWAS from multiple reference panels, conditional analyses, known GWAS variants, etc.). Our results and application highlight frequently overlooked TWAS challenges and illustrate the complexity of TWAS fine-mapping.
血液学指标是许多急性和慢性疾病的重要中间临床表型,具有高度遗传性。虽然全基因组关联研究(GWAS)已经确定了数千个包含与性状相关的变异的基因座,但这些关联背后的因果基因往往不确定。为了更好地了解潜在的遗传调控机制,我们进行了一项全转录组关联研究(TWAS),系统地研究了遗传预测的基因表达与来自遗传流行病学研究老龄化队列的 54542 名欧洲人血液学指标之间的关联。我们发现了 239 个与血液学指标显著相关的基因-性状关联;在一项 TWAS 荟萃分析中,我们在包含多达 35900 名来自妇女健康倡议、社区动脉粥样硬化风险研究和 BioMe 生物库的欧洲人的荟萃分析中复制了 71 个关联,p < 0.05。此外,我们试图通过对先前与血液学指标相关的个体变异进行条件分析来细化候选基因列表,并对 TWAS 基因座进行进一步的精细定位。为了便于解释我们的发现,我们设计了一个 R Shiny 应用程序,通过将我们的 TWAS 结果与其他遗传数据源(GWAS、来自多个参考面板的 TWAS、条件分析、已知的 GWAS 变体等)集成,以交互方式可视化我们的 TWAS 结果。我们的结果和应用程序突出了经常被忽视的 TWAS 挑战,并说明了 TWAS 精细定位的复杂性。