Suppr超能文献

精确建模罕见变异的零膨胀计数表型。

Precisely modeling zero-inflated count phenotype for rare variants.

机构信息

Duke-NUS Medical School, Centre for Quantitative Medicine, National University of Singapore, Singapore, Singapore.

Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA.

出版信息

Genet Epidemiol. 2022 Feb;46(1):73-86. doi: 10.1002/gepi.22438. Epub 2021 Nov 15.

Abstract

Count data with excessive zeros are increasingly ubiquitous in genetic association studies, such as neuritic plaques in brain pathology for Alzheimer's disease. Here, we developed gene-based association tests to model such data by a mixture of two distributions, one for the structural zeros contributed by the Binomial distribution, and the other for the counts from the Poisson distribution. We derived the score statistics of the corresponding parameter of the rare variants in the zero-inflated Poisson regression model, and then constructed burden (ZIP-b) and kernel (ZIP-k) tests for the association tests. We evaluated omnibus tests that combined both ZIP-b and ZIP-k tests. Through simulated sequence data, we illustrated the potential power gain of our proposed method over a two-stage method that analyzes binary and non-zero continuous data separately for both burden and kernel tests. The ZIP burden test outperformed the kernel test as expected in all scenarios except for the scenario of variants with a mixture of directions in the genetic effects. We further demonstrated its applications to analyses of the neuritic plaque data in the ROSMAP cohort. We expect our proposed test to be useful in practice as more powerful than or complementary to the two-stage method.

摘要

带有过多零值的计数数据在遗传关联研究中越来越普遍,例如阿尔茨海默病的脑病理学中的神经突斑块。在这里,我们开发了基于基因的关联测试,通过两种分布的混合来对这种数据进行建模,一种分布是由二项式分布贡献的结构零值,另一种分布是泊松分布的计数。我们推导出零膨胀泊松回归模型中稀有变异的相应参数的得分统计量,然后构建了用于关联测试的负担 (ZIP-b) 和核 (ZIP-k) 测试。我们评估了综合 ZIP-b 和 ZIP-k 测试的总体测试。通过模拟序列数据,我们说明了我们提出的方法相对于分别分析二进制和非零连续数据的两阶段方法在负担和核测试方面的潜在优势。ZIP 负担测试在除了遗传效应中变异具有混合方向的情况外,在所有情况下都表现出优于核测试的预期效果。我们进一步证明了它在 ROSMAP 队列中神经突斑块数据分析中的应用。我们期望我们提出的测试在实践中是有用的,因为它比两阶段方法更强大或互补。

相似文献

1
Precisely modeling zero-inflated count phenotype for rare variants.
Genet Epidemiol. 2022 Feb;46(1):73-86. doi: 10.1002/gepi.22438. Epub 2021 Nov 15.
2
On performance of parametric and distribution-free models for zero-inflated and over-dispersed count responses.
Stat Med. 2015 Oct 30;34(24):3235-45. doi: 10.1002/sim.6560. Epub 2015 Jun 15.
3
A comparison of statistical methods for modeling count data with an application to hospital length of stay.
BMC Med Res Methodol. 2022 Aug 4;22(1):211. doi: 10.1186/s12874-022-01685-8.
4
Variance components genetic association test for zero-inflated count outcomes.
Genet Epidemiol. 2019 Feb;43(1):82-101. doi: 10.1002/gepi.22162. Epub 2018 Oct 24.
5
A simulation study of the performance of statistical models for count outcomes with excessive zeros.
Stat Med. 2024 Oct 30;43(24):4752-4767. doi: 10.1002/sim.10198. Epub 2024 Aug 28.
6
A score test for overdispersion in zero-inflated poisson mixed regression model.
Stat Med. 2007 Mar 30;26(7):1608-22. doi: 10.1002/sim.2616.
7
Sensitivity of score tests for zero-inflation in count data.
Stat Med. 2004 Sep 15;23(17):2757-69. doi: 10.1002/sim.1828.
9
Testing modified zeros for Poisson regression models.
Stat Methods Med Res. 2019 Oct-Nov;28(10-11):3123-3141. doi: 10.1177/0962280218796253. Epub 2018 Sep 10.
10
The k-ZIG: flexible modeling for zero-inflated counts.
Biometrics. 2012 Sep;68(3):878-85. doi: 10.1111/j.1541-0420.2011.01729.x. Epub 2012 Feb 20.

引用本文的文献

1
Zim4rv: an R package to modeling zero-inflated count phenotype on regional-based rare variants.
BMC Bioinformatics. 2025 Jan 16;26(1):18. doi: 10.1186/s12859-024-06029-5.

本文引用的文献

1
Efficient mixed model approach for large-scale genome-wide association studies of ordinal categorical phenotypes.
Am J Hum Genet. 2021 May 6;108(5):825-839. doi: 10.1016/j.ajhg.2021.03.019. Epub 2021 Apr 8.
2
Genome-wide association of phenotypes based on clustering patterns of hand osteoarthritis identify as novel osteoarthritis gene.
Ann Rheum Dis. 2021 Mar;80(3):367-375. doi: 10.1136/annrheumdis-2020-217834. Epub 2020 Oct 14.
3
Cauchy combination test: a powerful test with analytic -value calculation under arbitrary dependency structures.
J Am Stat Assoc. 2020;115(529):393-402. doi: 10.1080/01621459.2018.1554485. Epub 2019 Apr 25.
5
Family-based association tests for rare variants with censored traits.
PLoS One. 2019 Jan 25;14(1):e0210870. doi: 10.1371/journal.pone.0210870. eCollection 2019.
6
Variance components genetic association test for zero-inflated count outcomes.
Genet Epidemiol. 2019 Feb;43(1):82-101. doi: 10.1002/gepi.22162. Epub 2018 Oct 24.
7
The UK Biobank resource with deep phenotyping and genomic data.
Nature. 2018 Oct;562(7726):203-209. doi: 10.1038/s41586-018-0579-z. Epub 2018 Oct 10.
8
Religious Orders Study and Rush Memory and Aging Project.
J Alzheimers Dis. 2018;64(s1):S161-S189. doi: 10.3233/JAD-179939.
9
Analysis of Microbiome Data in the Presence of Excess Zeros.
Front Microbiol. 2017 Nov 7;8:2114. doi: 10.3389/fmicb.2017.02114. eCollection 2017.
10
Leveraging population information in family-based rare variant association analyses of quantitative traits.
Genet Epidemiol. 2017 Feb;41(2):98-107. doi: 10.1002/gepi.22022. Epub 2016 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验