Suppr超能文献

在中国社区医疗中心评估用于检测糖尿病视网膜病变的人工智能系统。

Evaluation of an Artificial Intelligence System for the Detection of Diabetic Retinopathy in Chinese Community Healthcare Centers.

作者信息

Dong Xiuqing, Du Shaolin, Zheng Wenkai, Cai Chusheng, Liu Huaxiu, Zou Jiangfeng

机构信息

Department of Ophthalmology, Dongguan Tungwah Hospital, Dongguan, China.

出版信息

Front Med (Lausanne). 2022 Apr 11;9:883462. doi: 10.3389/fmed.2022.883462. eCollection 2022.

Abstract

OBJECTIVE

To evaluate the sensitivity and specificity of a Comprehensive Artificial Intelligence Retinal Expert (CARE) system for detecting diabetic retinopathy (DR) in a Chinese community population.

METHODS

This was a cross-sectional, diagnostic study. Participants with a previous diagnosis of diabetes from three Chinese community healthcare centers were enrolled in the study. Single-field color fundus photography was obtained and analyzed by the AI system and two ophthalmologists. Primary outcome measures included the sensitivity, specificity, positive predictive value, and negative predictive value with their 95% confidence intervals (CIs) of the AI system in detecting DR and diabetic macular edema (DME).

RESULTS

In this study, 443 subjects (848 eyes) were enrolled, and 283 (63.88%) were men. The mean age was 52.09 (11.51) years (range 18-82 years); 266 eyes were diagnosed with any DR, 233 with more-than-mild diabetic retinopathy (mtmDR), 112 with vision-threatening diabetic retinopathy (vtDR), and 57 with DME. The image ability of the AI system was as high as 99.06%, whereas its sensitivity and specificity varied significantly in detecting DR with different severities. The sensitivity/specificity to detect any DR was 75.19% (95%CI 69.47-80.17)/93.99% (95%CI 91.65-95.71), mtmDR 78.97% (95%CI 73.06-83.90)/92.52% (95%CI 90.07-94.41), vtDR 33.93% (95%CI 25.41-43.56)/97.69% (95%CI 96.25-98.61), and DME 47.37% (95%CI 34.18-60.91)/93.99% (95%CI 91.65-95.71).

CONCLUSIONS

This multicenter cross-sectional diagnostic study noted the safety and reliability of the CARE system for DR (especially mtmDR) detection in Chinese community healthcare centers. The system may effectively solve the dilemma faced by Chinese community healthcare centers: due to the lack of ophthalmic expertise of primary physicians, DR diagnosis and referral are not timely.

摘要

目的

评估综合人工智能视网膜专家(CARE)系统在中国社区人群中检测糖尿病视网膜病变(DR)的敏感性和特异性。

方法

这是一项横断面诊断研究。从三个中国社区医疗中心招募先前诊断为糖尿病的参与者。由人工智能系统和两名眼科医生获取并分析单视野彩色眼底照片。主要结局指标包括人工智能系统在检测DR和糖尿病性黄斑水肿(DME)时的敏感性、特异性、阳性预测值和阴性预测值及其95%置信区间(CI)。

结果

本研究共纳入443名受试者(848只眼),其中男性283名(63.88%)。平均年龄为52.09(11.51)岁(范围18 - 82岁);266只眼被诊断患有任何DR,233只眼患有中度以上糖尿病视网膜病变(mtmDR),112只眼患有威胁视力的糖尿病视网膜病变(vtDR),57只眼患有DME。人工智能系统的图像能力高达99.06%,但其在检测不同严重程度的DR时敏感性和特异性差异显著。检测任何DR的敏感性/特异性为75.19%(95%CI 69.47 - 80.17)/93.99%(95%CI 91.65 - 95.71),mtmDR为78.97%(95%CI 73.06 - 83.90)/92.52%(95%CI 90.07 - 94.41),vtDR为33.93%(95%CI 25.41 - 43.56)/97.69%(95%CI 96.25 - 98.61),DME为47.37%(95%CI 34.18 - 60.91)/93.99%(95%CI 91.65 - 95.71)。

结论

这项多中心横断面诊断研究指出了CARE系统在中国社区医疗中心检测DR(尤其是mtmDR)的安全性和可靠性。该系统可能有效解决中国社区医疗中心面临的困境:由于基层医生缺乏眼科专业知识,DR诊断和转诊不及时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c686/9035696/1dc9d93e0d2e/fmed-09-883462-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验