Suppr超能文献

转移的地点和方式:无监督域适应中知识聚合诱导的可转移性感知

Where and How to Transfer: Knowledge Aggregation-Induced Transferability Perception for Unsupervised Domain Adaptation.

作者信息

Dong Jiahua, Cong Yang, Sun Gan, Fang Zhen, Ding Zhengming

出版信息

IEEE Trans Pattern Anal Mach Intell. 2021 Nov 16;PP. doi: 10.1109/TPAMI.2021.3128560.

Abstract

Unsupervised domain adaptation without accessing expensive annotation processes of target data has achieved remarkable successes in semantic segmentation. However, most existing state-of-the-art methods cannot explore whether semantic representations across domains are transferable or not, which may result in the negative transfer brought by irrelevant knowledge. To tackle this challenge, in this paper, we develop a novel Knowledge Aggregation-induced Transferability Perception (KATP) for unsupervised domain adaptation, which is a pioneering attempt to distinguish transferable or untransferable knowledge across domains. Specifically, the KATP module is designed to quantify which semantic knowledge across domains is transferable, by incorporating transferability information propagation from global category-wise prototypes. Based on KATP, we design a novel KATP Adaptation Network (KATPAN) to determine where and how to transfer. The KATPAN contains a transferable appearance translation module T_A() and a transferable representation augmentation module T_R(), where both modules construct a virtuous circle of performance promotion. T_A() develops a transferability-aware information bottleneck to highlight where to adapt transferable visual characterizations and modality information; T_R() explores how to augment transferable representations while abandoning untransferable information, and promotes the translation performance of T_A() in return. Experiments on several representative datasets and a medical dataset support the state-of-the-art performance of our model.

摘要

在不涉及目标数据昂贵标注过程的情况下,无监督域适应在语义分割方面取得了显著成功。然而,大多数现有的最先进方法无法探究跨域的语义表示是否可转移,这可能会导致无关知识带来的负迁移。为应对这一挑战,在本文中,我们开发了一种用于无监督域适应的新型知识聚合诱导可迁移性感知(KATP)方法,这是区分跨域可转移或不可转移知识的开创性尝试。具体而言,KATP模块旨在通过纳入来自全局类别原型的可迁移性信息传播,来量化跨域的哪些语义知识是可转移的。基于KATP,我们设计了一种新型的KATP适应网络(KATPAN)来确定在何处以及如何进行转移。KATPAN包含一个可转移外观翻译模块T_A()和一个可转移表示增强模块T_R(),其中这两个模块都构建了一个性能提升的良性循环。T_A()开发了一种可迁移性感知信息瓶颈,以突出在何处适应可转移的视觉特征和模态信息;T_R()探索如何在摒弃不可转移信息的同时增强可转移表示,并反过来促进T_A()的翻译性能。在几个代表性数据集和一个医学数据集上的实验支持了我们模型的最先进性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验