Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
Shanxi Laboratory for Yellow River, College of Environment and Resource, Shanxi University, Taiyuan 30006, China.
J Colloid Interface Sci. 2022 Feb 15;608(Pt 3):2896-2906. doi: 10.1016/j.jcis.2021.11.014. Epub 2021 Nov 6.
Defect engineering has been proven to be an effective approach for electronic structure modulation and plays an important role in the photocatalytic performance of nanomaterials. In this study, a series of CuS nanosheet sulfur vacancies (V) are constructed by a simple hydrothermal synthesis method. The CuS with the highest V concentration exhibits strong antibacterial performance, achieving bactericidal rates of 99.9% against the Gram-positive Bacillus subtilis and Gram-negative Escherichia coli bacteria under 808 nm laser irradiation. Under illumination, the temperature of the catalyst increases from 23.5 °C to 53.3 °C, and with a high photothermal conversion efficiency of 41.8%. For E. coli and B. subtilis, the reactive oxygen species (ROS) production that is induced by the CuS group is 8.6 and 9.6 times greater, respectively, than that of the control group. The presence of V facilitates the enhancement of the light absorption capacity and the separation efficiency of electron-hole pairs, thereby resulting in improved photocatalytic performance. The synergistic effect of photothermal therapy (PTT) and photodynamic therapy (PDT) is aimed at causing oxidative damage and leading to bacterial death. Our findings provide an effective antibacterial strategy and offer new horizons for the application of CuS catalysts with V in the NIR region.
缺陷工程已被证明是一种有效的电子结构调制方法,在纳米材料的光催化性能中起着重要作用。在这项研究中,通过简单的水热合成方法构建了一系列 CuS 纳米片硫空位 (V)。具有最高 V 浓度的 CuS 在 808nm 激光照射下表现出很强的抗菌性能,对革兰氏阳性枯草芽孢杆菌和革兰氏阴性大肠杆菌的杀菌率达到 99.9%。在光照下,催化剂的温度从 23.5°C升高到 53.3°C,光热转换效率高达 41.8%。对于大肠杆菌和枯草芽孢杆菌,CuS 组诱导的活性氧 (ROS) 产生分别比对照组高 8.6 倍和 9.6 倍。V 的存在促进了光吸收能力和电子空穴对分离效率的提高,从而提高了光催化性能。光热疗法 (PTT) 和光动力疗法 (PDT) 的协同作用旨在导致氧化损伤并导致细菌死亡。我们的研究结果为具有 V 的 CuS 催化剂在近红外区域的应用提供了一种有效的抗菌策略,并开辟了新的前景。