Suppr超能文献

人工智能在年龄、动脉粥样硬化与血管造影狭窄相关性中的应用。

Relationship of age, atherosclerosis and angiographic stenosis using artificial intelligence.

机构信息

Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA.

Cleerly Health, New York, New York, USA.

出版信息

Open Heart. 2021 Nov;8(2). doi: 10.1136/openhrt-2021-001832.

Abstract

OBJECTIVE

The study evaluates the relationship of coronary stenosis, atherosclerotic plaque characteristics (APCs) and age using artificial intelligence enabled quantitative coronary computed tomographic angiography (AI-QCT).

METHODS

This is a post-hoc analysis of data from 303 subjects enrolled in the CREDENCE (Computed TomogRaphic Evaluation of Atherosclerotic Determinants of Myocardial IsChEmia) trial who were referred for invasive coronary angiography and subsequently underwent coronary computed tomographic angiography (CCTA). In this study, a blinded core laboratory analysing quantitative coronary angiography images classified lesions as obstructive (≥50%) or non-obstructive (<50%) while AI software quantified APCs including plaque volume (PV), low-density non-calcified plaque (LD-NCP), non-calcified plaque (NCP), calcified plaque (CP), lesion length on a per-patient and per-lesion basis based on CCTA imaging. Plaque measurements were normalised for vessel volume and reported as % percent atheroma volume (%PAV) for all relevant plaque components. Data were subsequently stratified by age <65 and ≥65 years.

RESULTS

The cohort was 64.4±10.2 years and 29% women. Overall, patients >65 had more PV and CP than patients <65. On a lesion level, patients >65 had more CP than younger patients in both obstructive (29.2 mm vs 48.2 mm; p<0.04) and non-obstructive lesions (22.1 mm vs 49.4 mm; p<0.004) while younger patients had more %PAV (LD-NCP) (1.5% vs 0.7%; p<0.038). Younger patients had more PV, LD-NCP, NCP and lesion lengths in obstructive compared with non-obstructive lesions. There were no differences observed between lesion types in older patients.

CONCLUSION

AI-QCT identifies a unique APC signature that differs by age and degree of stenosis and provides a foundation for AI-guided age-based approaches to atherosclerosis identification, prevention and treatment.

摘要

目的

本研究利用人工智能增强定量冠状动脉计算机断层扫描血管造影(AI-QCT)评估冠状动脉狭窄、动脉粥样硬化斑块特征(APCs)与年龄之间的关系。

方法

这是一项对 303 名 CREDENCE(计算机断层扫描评估动脉粥样硬化性心肌缺血的决定因素)试验患者的回顾性数据分析,这些患者因疑似冠心病而被转诊接受有创冠状动脉造影检查,随后接受了冠状动脉计算机断层扫描血管造影(CCTA)。在这项研究中,一个盲法核心实验室分析定量冠状动脉血管造影图像,将病变分为阻塞性(≥50%)或非阻塞性(<50%),同时 AI 软件根据 CCTA 图像对斑块体积(PV)、低密度非钙化斑块(LD-NCP)、非钙化斑块(NCP)、钙化斑块(CP)等 APC 进行量化,并基于每位患者和每位患者的病变对斑块长度进行量化。对斑块测量值进行血管体积标准化,并报告所有相关斑块成分的粥样斑块体积百分比(%PAV)。随后根据年龄<65 岁和≥65 岁对数据进行分层。

结果

该队列的平均年龄为 64.4±10.2 岁,女性占 29%。总体而言,年龄>65 岁的患者的 PV 和 CP 比年龄<65 岁的患者多。在病变水平上,年龄>65 岁的患者在阻塞性病变(29.2mm 与 48.2mm;p<0.04)和非阻塞性病变(22.1mm 与 49.4mm;p<0.004)中 CP 比年轻患者多,而年轻患者的 %PAV(LD-NCP)更高(1.5% 与 0.7%;p<0.038)。与非阻塞性病变相比,年轻患者在阻塞性病变中具有更大的 PV、LD-NCP、NCP 和病变长度。在年龄较大的患者中,不同病变类型之间没有差异。

结论

AI-QCT 可识别出与年龄和狭窄程度相关的独特 APC 特征,为基于人工智能的年龄相关性动脉粥样硬化识别、预防和治疗方法提供了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验