Suppr超能文献

专家读者在通过冠状动脉CT血管造影定量斑块体积和斑块特征方面的观察者间变异性:一项CLARIFY试验子研究

Interobserver variability among expert readers quantifying plaque volume and plaque characteristics on coronary CT angiography: a CLARIFY trial sub-study.

作者信息

Jonas Rebecca A, Weerakoon Shaneke, Fisher Rebecca, Griffin William F, Kumar Vishak, Rahban Habib, Marques Hugo, Karlsberg Ronald P, Jennings Robert S, Crabtree Tami R, Choi Andrew D, Earls James P

机构信息

Department of Internal Medicine, Thomas Jefferson University Medical Center, Philadelphia, PA, USA.

Department of Cardiology, The George Washington University School of Medicine, Washington, DC, USA.

出版信息

Clin Imaging. 2022 Nov;91:19-25. doi: 10.1016/j.clinimag.2022.08.005. Epub 2022 Aug 16.

Abstract

BACKGROUND

The difference between expert level (L3) reader and artificial intelligence (AI) performance for quantifying coronary plaque and plaque components is unknown.

OBJECTIVE

This study evaluates the interobserver variability among expert readers for quantifying the volume of coronary plaque and plaque components on coronary computed tomographic angiography (CCTA) using an artificial intelligence enabled quantitative CCTA analysis software as a reference (AI-QCT).

METHODS

This study uses CCTA imaging obtained from 232 patients enrolled in the CLARIFY (CT EvaLuation by ARtificial Intelligence For Atherosclerosis, Stenosis and Vascular MorphologY) study. Readers quantified overall plaque volume and the % breakdown of noncalcified plaque (NCP) and calcified plaque (CP) on a per vessel basis. Readers categorized high risk plaque (HRP) based on the presence of low-attenuation-noncalcified plaque (LA-NCP) and positive remodeling (PR; ≥1.10). All CCTAs were analyzed by an FDA-cleared software service that performs AI-driven plaque characterization and quantification (AI-QCT) for comparison to L3 readers. Reader generated analyses were compared among readers and to AI-QCT generated analyses.

RESULTS

When evaluating plaque volume on a per vessel basis, expert readers achieved moderate to high interobserver consistency with an intra-class correlation coefficient of 0.78 for a single reader score and 0.91 for mean scores. There was a moderate trend between readers 1, 2, and 3 and AI with spearman coefficients of 0.70, 0.68 and 0.74, respectively. There was high discordance between readers and AI plaque component analyses. When quantifying %NCP v. %CP, readers 1, 2, and 3 achieved a weighted kappa coefficient of 0.23, 0.34 and 0.24, respectively, compared to AI with a spearman coefficient of 0.38, 0.51, and 0.60, respectively. The intra-class correlation coefficient among readers for plaque composition assessment was 0.68. With respect to HRP, readers 1, 2, and 3 achieved a weighted kappa coefficient of 0.22, 0.26, and 0.17, respectively, and a spearman coefficient of 0.36, 0.35, and 0.44, respectively.

CONCLUSION

Expert readers performed moderately well quantifying total plaque volumes with high consistency. However, there was both significant interobserver variability and high discordance with AI-QCT when quantifying plaque composition.

摘要

背景

在量化冠状动脉斑块及斑块成分方面,专家级(L3)读者与人工智能(AI)的表现差异尚不清楚。

目的

本研究使用一款具备人工智能功能的冠状动脉计算机断层血管造影(CCTA)定量分析软件(AI-QCT)作为参考,评估专家读者之间在通过CCTA量化冠状动脉斑块体积及斑块成分时的观察者间变异性。

方法

本研究使用了从参与CLARIFY(人工智能对动脉粥样硬化、狭窄和血管形态的CT评估)研究的232名患者中获取的CCTA图像。读者逐血管量化总体斑块体积以及非钙化斑块(NCP)和钙化斑块(CP)的百分比构成。读者根据低衰减非钙化斑块(LA-NCP)的存在情况和阳性重塑(PR;≥1.10)对高危斑块(HRP)进行分类。所有CCTA均由一项获得美国食品药品监督管理局批准的软件服务进行分析,该服务可进行人工智能驱动下的斑块特征描述和量化(AI-QCT),以便与L3读者的分析结果进行比较。将读者生成的分析结果在读者之间以及与AI-QCT生成的分析结果进行比较。

结果

在逐血管评估斑块体积时,专家读者实现了中度到高度的观察者间一致性,单个读者评分的组内相关系数为0.78,平均评分的组内相关系数为0.91。读者1、2和3与AI之间存在中度趋势,斯皮尔曼系数分别为0.70、0.68和0.74。读者与AI在斑块成分分析方面存在高度不一致。在量化NCP百分比与CP百分比时,读者1、2和3的加权卡帕系数分别为0.23、0.34和0.24,而与AI相比,斯皮尔曼系数分别为0.38、0.51和0.60。读者之间在斑块成分评估方面的组内相关系数为0.68。关于HRP,读者1、2和3的加权卡帕系数分别为0.22、0.26和0.17,斯皮尔曼系数分别为0.36、0.35和0.44。

结论

专家读者在量化总斑块体积方面表现中等良好,一致性较高。然而,在量化斑块成分时,观察者间存在显著变异性,且与AI-QCT存在高度不一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验