Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.
Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.
PLoS Comput Biol. 2021 Nov 17;17(11):e1009601. doi: 10.1371/journal.pcbi.1009601. eCollection 2021 Nov.
Because local field potentials (LFPs) arise from multiple sources in different spatial locations, they do not easily reveal coordinated activity across neural populations on a trial-to-trial basis. As we show here, however, once disparate source signals are decoupled, their trial-to-trial fluctuations become more accessible, and cross-population correlations become more apparent. To decouple sources we introduce a general framework for estimation of current source densities (CSDs). In this framework, the set of LFPs result from noise being added to the transform of the CSD by a biophysical forward model, while the CSD is considered to be the sum of a zero-mean, stationary, spatiotemporal Gaussian process, having fast and slow components, and a mean function, which is the sum of multiple time-varying functions distributed across space, each varying across trials. We derived biophysical forward models relevant to the data we analyzed. In simulation studies this approach improved identification of source signals compared to existing CSD estimation methods. Using data recorded from primate auditory cortex, we analyzed trial-to-trial fluctuations in both steady-state and task-evoked signals. We found cortical layer-specific phase coupling between two probes and showed that the same analysis applied directly to LFPs did not recover these patterns. We also found task-evoked CSDs to be correlated across probes, at specific cortical depths. Using data from Neuropixels probes in mouse visual areas, we again found evidence for depth-specific phase coupling of primary visual cortex and lateromedial area based on the CSDs.
由于局部场电位 (LFPs) 源自不同空间位置的多个源,因此它们不容易在逐次试验的基础上揭示神经群体之间的协调活动。然而,正如我们在这里展示的,一旦离散的源信号被解耦,它们的逐次试验波动就变得更容易接近,并且跨群体相关性变得更加明显。为了解耦源,我们引入了一种用于估计电流源密度 (CSD) 的通用框架。在这个框架中,一组 LFPs 是由噪声通过生物物理正向模型添加到 CSD 的变换而产生的,而 CSD 被认为是零均值、平稳、时空高斯过程的总和,具有快速和慢速分量,以及均值函数,它是多个时变函数在空间中的总和,每个函数在试验中变化。我们推导出了与我们分析的数据相关的生物物理正向模型。在模拟研究中,与现有的 CSD 估计方法相比,这种方法提高了源信号的识别能力。使用从灵长类听觉皮层记录的数据,我们分析了稳态和任务诱发信号的逐次试验波动。我们发现两个探头之间存在皮质层特异性的相位耦合,并表明相同的分析直接应用于 LFPs 无法恢复这些模式。我们还发现,在特定的皮质深度,任务诱发的 CSD 在探头之间是相关的。使用来自小鼠视觉区域的 Neuropixels 探头的数据,我们再次根据 CSD 发现了初级视觉皮层和中侧区域的深度特异性相位耦合的证据。