Center for Integrative Neuroplasticity (CINPLA), Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway. Department of Bioengineering, University of California San Diego, San Diego, CA, United States of America.
J Neural Eng. 2019 Apr;16(2):026030. doi: 10.1088/1741-2552/ab03a1. Epub 2019 Jan 31.
Mechanistic modeling of neurons is an essential component of computational neuroscience that enables scientists to simulate, explain, and explore neural activity. The conventional approach to simulation of extracellular neural recordings first computes transmembrane currents using the cable equation and then sums their contribution to model the extracellular potential. This two-step approach relies on the assumption that the extracellular space is an infinite and homogeneous conductive medium, while measurements are performed using neural probes. The main purpose of this paper is to assess to what extent the presence of the neural probes of varying shape and size impacts the extracellular field and how to correct for them.
We apply a detailed modeling framework allowing explicit representation of the neuron and the probe to study the effect of the probes and thereby estimate the effect of ignoring it. We use meshes with simplified neurons and different types of probe and compare the extracellular action potentials with and without the probe in the extracellular space. We then compare various solutions to account for the probes' presence and introduce an efficient probe correction method to include the probe effect in modeling of extracellular potentials.
Our computations show that microwires hardly influence the extracellular electric field and their effect can therefore be ignored. In contrast, multi-electrode arrays (MEAs) significantly affect the extracellular field by magnifying the recorded potential. While MEAs behave similarly to infinite insulated planes, we find that their effect strongly depends on the neuron-probe alignment and probe orientation.
Ignoring the probe effect might be deleterious in some applications, such as neural localization and parameterization of neural models from extracellular recordings. Moreover, the presence of the probe can improve the interpretation of extracellular recordings, by providing a more accurate estimation of the extracellular potential generated by neuronal models.
神经元的机制建模是计算神经科学的一个重要组成部分,使科学家能够模拟、解释和探索神经活动。模拟细胞外神经记录的传统方法首先使用电缆方程计算跨膜电流,然后将它们的贡献相加以模拟细胞外电势。这种两步法假设细胞外空间是一个无限和均匀的导电介质,而测量是使用神经探针进行的。本文的主要目的是评估探针的形状和大小对细胞外场的影响程度,以及如何对其进行校正。
我们应用了一个详细的建模框架,允许明确表示神经元和探针,以研究探针的影响,从而估计忽略它的影响。我们使用具有简化神经元和不同类型探针的网格,并在细胞外空间中比较有和没有探针的细胞外动作电位。然后,我们比较了各种解决方案来解释探针的存在,并引入了一种有效的探针校正方法,以在细胞外电位建模中包括探针效应。
我们的计算表明,微丝几乎不会影响细胞外电场,因此可以忽略其影响。相比之下,多电极阵列 (MEA) 通过放大记录的电势显著影响细胞外场。虽然 MEA 行为类似于无限绝缘平面,但我们发现它们的影响强烈依赖于神经元-探针的对齐和探针的方向。
在某些应用中,忽略探针效应可能是有害的,例如神经定位和从细胞外记录参数化神经模型。此外,探针的存在可以通过提供更准确的神经元模型产生的细胞外电势估计,改善对细胞外记录的解释。