Suppr超能文献

个体层面数据在 COVID-19 电话调查中的代表性:来自撒哈拉以南非洲的发现。

Representativeness of individual-level data in COVID-19 phone surveys: Findings from Sub-Saharan Africa.

机构信息

Living Standards Measurement Study, Development Data Group, World Bank, Washington, D.C., United States of America.

Living Standards Measurement Study, Development Data Group, World Bank, Rome, Italy.

出版信息

PLoS One. 2021 Nov 17;16(11):e0258877. doi: 10.1371/journal.pone.0258877. eCollection 2021.

Abstract

The COVID-19 pandemic has created urgent demand for timely data, leading to a surge in mobile phone surveys for tracking the impacts of and responses to the pandemic. Using data from national phone surveys implemented in Ethiopia, Malawi, Nigeria and Uganda during the pandemic and the pre-COVID-19 national face-to-face surveys that served as the sampling frames for the phone surveys, this paper documents selection the biases in individual-level analyses based on phone survey data. In most cases, individual-level data are available only for phone survey respondents, who we find are more likely to be household heads or their spouses and non-farm enterprise owners, and on average, are older and better educated vis-a-vis the general adult population. These differences are the result of uneven access to mobile phones in the population and the way that phone survey respondents are selected. To improve the representativeness of individual-level analysis using phone survey data, we recalibrate the phone survey sampling weights based on propensity score adjustments that are derived from a model of an individual's likelihood of being interviewed as a function of individual- and household-level attributes. We find that reweighting improves the representativeness of the estimates for phone survey respondents, moving them closer to those of the general adult population. This holds for both women and men and for a range of demographic, education, and labor market outcomes. However, reweighting increases the variance of the estimates and, in most cases, fails to overcome selection biases. This indicates limitations to deriving representative individual-level estimates from phone survey data. Obtaining reliable data on men and women through future phone surveys will require random selection of adult interviewees within sampled households.

摘要

新冠疫情大流行产生了对及时数据的迫切需求,导致用于追踪疫情影响和应对措施的移动电话调查激增。本文利用疫情期间在埃塞俄比亚、马拉维、尼日利亚和乌干达实施的国家电话调查,以及作为电话调查抽样框架的新冠疫情前国家面对面调查的数据,记录了基于电话调查数据进行个体层面分析时存在的选择偏差。在大多数情况下,只有电话调查受访者拥有个体层面的数据,我们发现这些受访者更有可能是家庭户主或其配偶,以及非农业企业所有者,且平均而言,他们比一般成年人口年龄更大、教育程度更高。这些差异是由于人口中移动电话使用的不均衡,以及电话调查受访者选择方式造成的。为了提高使用电话调查数据进行个体层面分析的代表性,我们根据倾向得分调整重新校准电话调查抽样权重,这些调整是根据个体和家庭层面属性的函数来计算个体被访谈的可能性。我们发现,重新加权可以提高电话调查受访者估计值的代表性,使他们更接近一般成年人口。这适用于女性和男性,以及一系列人口统计、教育和劳动力市场结果。然而,重新加权会增加估计值的方差,并且在大多数情况下,无法克服选择偏差。这表明,从电话调查数据中得出有代表性的个体层面估计值存在局限性。未来的电话调查要想可靠地获取男性和女性的数据,需要在抽样家庭中随机选择成年受访者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ba/8598049/711e473e5cdc/pone.0258877.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验