Zhu Yi-Cheng, Jin Peng-Fei, Bao Jie, Jiang Quan, Wang Ximing
First Clinical Medical College, Soochow University, Suzhou, China.
Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, China.
Ann Transl Med. 2021 Oct;9(20):1526. doi: 10.21037/atm-21-4328.
Ultrasound (US) is widely used in the clinical diagnosis of thyroid nodules. Artificial intelligence-powered US is becoming an important issue in the research community. This study aimed to develop an improved deep learning model-based algorithm to classify benign and malignant thyroid nodules (TNs) using thyroid US images.
In total, 592 patients with 600 TNs were included in the internal training, validation, and testing data set; 187 patients with 200 TNs were recruited for the external test data set. We developed a Visual Geometry Group (VGG)-16T model, based on the VGG-16 architecture, but with additional batch normalization (BN) and dropout layers in addition to the fully connected layers. We conducted a 10-fold cross-validation to analyze the performance of the VGG-16T model using a data set of gray-scale US images from 5 different brands of US machines.
For the internal data set, the VGG-16T model had 87.43% sensitivity, 85.43% specificity, and 86.43% accuracy. For the external data set, the VGG-16T model achieved an area under the curve (AUC) of 0.829 [95% confidence interval (CI): 0.770-0.879], a radiologist with 15 years' working experience achieved an AUC of 0.705 (95% CI: 0.659-0.801), a radiologist with 10 years' experience achieved an AUC of 0.725 (95% CI: 0.653-0.797), and a radiologist with 5 years' experience achieved an AUC of 0.660 (95% CI: 0.584-0.736).
The VGG-16T model had high specificity, sensitivity, and accuracy in differentiating between malignant and benign TNs. Its diagnostic performance was superior to that of experienced radiologists. Thus, the proposed improved deep-learning model can assist radiologists to diagnose thyroid cancer.
超声(US)广泛应用于甲状腺结节的临床诊断。人工智能驱动的超声正成为研究领域的一个重要课题。本研究旨在开发一种基于深度学习模型的改进算法,利用甲状腺超声图像对甲状腺良恶性结节(TNs)进行分类。
内部训练、验证和测试数据集共纳入592例患者的600个甲状腺结节;外部测试数据集招募了187例患者的200个甲状腺结节。我们基于VGG-16架构开发了一个VGG-16T模型,但在全连接层之外还增加了批量归一化(BN)和随机失活层。我们使用来自5个不同品牌超声机器的灰度超声图像数据集进行了10折交叉验证,以分析VGG-16T模型的性能。
对于内部数据集,VGG-16T模型的灵敏度为87.43%,特异度为85.43%,准确率为86.43%。对于外部数据集,VGG-16T模型的曲线下面积(AUC)为0.829 [95%置信区间(CI):0.770 - 0.879],一名有15年工作经验的放射科医生的AUC为0.705(95% CI:0.659 - 0.801),一名有10年经验的放射科医生的AUC为0.725(95% CI:0.653 - 0.797),一名有5年经验的放射科医生的AUC为0.660(95% CI:0.584 - 0.736)。
VGG-16T模型在区分甲状腺良恶性结节方面具有较高的特异度、灵敏度和准确率。其诊断性能优于经验丰富的放射科医生。因此,所提出的改进深度学习模型可协助放射科医生诊断甲状腺癌。