Suppr超能文献

关于解锁酿酒酵母和克鲁维酵母遗传改良的生命周期和细胞身份调控回路的见解。

Insights on life cycle and cell identity regulatory circuits for unlocking genetic improvement in Zygosaccharomyces and Kluyveromyces yeasts.

机构信息

Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy.

School of Microbiology, APC Microbiome Ireland, Environmental Research Institute, University College Cork, Cork T12 K8AF, Ireland.

出版信息

FEMS Yeast Res. 2021 Dec 15;21(8). doi: 10.1093/femsyr/foab058.

Abstract

Evolution has provided a vast diversity of yeasts that play fundamental roles in nature and society. This diversity is not limited to genotypically homogeneous species with natural interspecies hybrids and allodiploids that blur species boundaries frequently isolated. Thus, life cycle and the nature of breeding systems have profound effects on genome variation, shaping heterozygosity, genotype diversity and ploidy level. The apparent enrichment of hybrids in industry-related environments suggests that hybridization provides an adaptive route against stressors and creates interest in developing new hybrids for biotechnological uses. For example, in the Saccharomyces genus where regulatory circuits controlling cell identity, mating competence and meiosis commitment have been extensively studied, this body of knowledge is being used to combine interesting traits into synthetic F1 hybrids, to bypass F1 hybrid sterility and to dissect complex phenotypes by bulk segregant analysis. Although these aspects are less known in other industrially promising yeasts, advances in whole-genome sequencing and analysis are changing this and new insights are being gained, especially in the food-associated genera Zygosaccharomyces and Kluyveromyces. We discuss this new knowledge and highlight how deciphering cell identity circuits in these lineages will contribute significantly to identify the genetic determinants underpinning complex phenotypes and open new avenues for breeding programmes.

摘要

进化提供了大量的酵母,它们在自然界和社会中发挥着重要的作用。这种多样性不仅局限于基因型相同的物种,还有经常发生杂交的种间杂种和异源二倍体,这些物种的界限经常模糊不清。因此,生命周期和繁殖系统的性质对基因组变异有深远的影响,形成杂合性、基因型多样性和倍性水平。杂种在与工业相关的环境中明显丰富,这表明杂交提供了一种适应应激的途径,并引起了人们开发新的杂种用于生物技术应用的兴趣。例如,在酿酒酵母属中,控制细胞身份、交配能力和减数分裂承诺的调控回路已经得到了广泛的研究,这些知识正被用于将有趣的性状组合成合成的 F1 杂种,以绕过 F1 杂种的不育性,并通过批量分离分析来剖析复杂的表型。虽然在其他具有工业前景的酵母中,这些方面的了解较少,但全基因组测序和分析的进展正在改变这一现状,并获得了新的见解,特别是在与食品相关的德巴利酵母属和克鲁维酵母属。我们讨论了这一新的知识,并强调了在这些谱系中破译细胞身份回路将如何有助于确定复杂表型的遗传决定因素,并为繁殖计划开辟新的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d2e/8673824/a0acbb265119/foab058fig1.jpg

相似文献

2
Mechanism for Restoration of Fertility in Hybrid Zygosaccharomyces rouxii Generated by Interspecies Hybridization.
Appl Environ Microbiol. 2017 Oct 17;83(21). doi: 10.1128/AEM.01187-17. Print 2017 Nov 1.
3
Evolutionary restoration of fertility in an interspecies hybrid yeast, by whole-genome duplication after a failed mating-type switch.
PLoS Biol. 2017 May 16;15(5):e2002128. doi: 10.1371/journal.pbio.2002128. eCollection 2017 May.
5
Unravelling genomic diversity of Zygosaccharomyces rouxii complex with a link to its life cycle.
FEMS Yeast Res. 2013 May;13(3):245-58. doi: 10.1111/1567-1364.12027. Epub 2013 Jan 14.
7
Can Interspecies Hybrid Zygosaccharomyces rouxii Produce an Allohaploid Gamete?
Appl Environ Microbiol. 2017 Dec 15;84(1). doi: 10.1128/AEM.01845-17. Print 2018 Jan 1.
9
Diversity and Postzygotic Evolution of the Mitochondrial Genome in Hybrids of Species Isolated by Double Sterility Barrier.
Front Microbiol. 2020 May 7;11:838. doi: 10.3389/fmicb.2020.00838. eCollection 2020.
10
MAT heterozygosity and the second sterility barrier in the reproductive isolation of Saccharomyces species.
Curr Genet. 2020 Oct;66(5):957-969. doi: 10.1007/s00294-020-01080-0. Epub 2020 Apr 30.

引用本文的文献

1
The evolution and role of the periplasmic asparaginase Asp3 in yeast.
FEMS Yeast Res. 2022 Oct 3;22(1). doi: 10.1093/femsyr/foac044.
2
Unraveling the potential of non-conventional yeasts in biotechnology.
FEMS Yeast Res. 2022 Jan 27;22(1). doi: 10.1093/femsyr/foab071.

本文引用的文献

1
Lager Yeast Design Through Meiotic Segregation of a × Hybrid.
Front Fungal Biol. 2021 Sep 16;2:733655. doi: 10.3389/ffunb.2021.733655. eCollection 2021.
2
The 10,000-Year Success Story of Wheat!
Foods. 2021 Sep 8;10(9):2124. doi: 10.3390/foods10092124.
4
Restoring fertility in yeast hybrids: Breeding and quantitative genetics of beneficial traits.
Proc Natl Acad Sci U S A. 2021 Sep 21;118(38). doi: 10.1073/pnas.2101242118.
5
The neutral rate of whole-genome duplication varies among yeast species and their hybrids.
Nat Commun. 2021 May 25;12(1):3126. doi: 10.1038/s41467-021-23231-8.
6
The revenge of Zygosaccharomyces yeasts in food biotechnology and applied microbiology.
World J Microbiol Biotechnol. 2021 May 10;37(6):96. doi: 10.1007/s11274-021-03066-7.
7
Learning Yeast Genetics from Miro Radman.
Cells. 2021 Apr 20;10(4):945. doi: 10.3390/cells10040945.
8
Regulation of mating and mating-type-specific genes in Zygosaccharomyces sp. yeast.
Yeast. 2021 Aug;38(8):471-479. doi: 10.1002/yea.3561. Epub 2021 Apr 9.
9
A novel allele of SIR2 reveals a heritable intermediate state of gene silencing.
Genetics. 2021 May 17;218(1). doi: 10.1093/genetics/iyab041.
10
Entering GATTACA: yeast genomes: analysis, insights and applications.
FEMS Yeast Res. 2021 Jan 7;20(8). doi: 10.1093/femsyr/foaa064.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验