Vision, Learning and Control Research Group, University of Southampton, Southampton, United Kingdom.
Department of Machine Learning, Laboratoire Hubert Curien, Saint-Etienne, France.
PLoS One. 2021 Nov 18;16(11):e0259969. doi: 10.1371/journal.pone.0259969. eCollection 2021.
Comprehensive testing schemes, followed by adequate contact tracing and isolation, represent the best public health interventions we can employ to reduce the impact of an ongoing epidemic when no or limited vaccine supplies are available and the implications of a full lockdown are to be avoided. However, the process of tracing can prove feckless for highly-contagious viruses such as SARS-CoV-2. The interview-based approaches often miss contacts and involve significant delays, while digital solutions can suffer from insufficient adoption rates or inadequate usage patterns. Here we present a novel way of modelling different contact tracing strategies, using a generalized multi-site mean-field model, which can naturally assess the impact of manual and digital approaches alike. Our methodology can readily be applied to any compartmental formulation, thus enabling the study of more complex pathogen dynamics. We use this technique to simulate a newly-defined epidemiological model, SEIR-T, and show that, given the right conditions, tracing in a COVID-19 epidemic can be effective even when digital uptakes are sub-optimal or interviewers miss a fair proportion of the contacts.
综合测试方案,辅以充分的接触者追踪和隔离,是在没有或有限疫苗供应且需要避免全面封锁的情况下,我们可以采用的减少正在进行的传染病影响的最佳公共卫生干预措施。然而,对于 SARS-CoV-2 等高度传染性病毒,追踪过程可能会无效。基于访谈的方法往往会错过接触者,并且涉及到重大的延迟,而数字解决方案可能会受到采用率不足或使用模式不当的影响。在这里,我们提出了一种使用广义多点平均场模型对不同接触者追踪策略进行建模的新方法,该方法可以自然地评估手动和数字方法的影响。我们的方法可以很容易地应用于任何分区公式,从而能够研究更复杂的病原体动态。我们使用该技术模拟了一个新定义的流行病学模型 SEIR-T,并表明,在适当的条件下,即使数字利用率不理想或访谈者错过了相当一部分接触者,在 COVID-19 流行期间进行追踪也可以是有效的。