Suppr超能文献

干预精神病理学网络:通过模拟评估干预靶点。

Intervening on psychopathology networks: Evaluating intervention targets through simulations.

机构信息

Department of Psychological Methods, University of Amsterdam, Amsterdam, the Netherlands.

Department of Psychological Methods, University of Amsterdam, Amsterdam, the Netherlands.

出版信息

Methods. 2022 Aug;204:29-37. doi: 10.1016/j.ymeth.2021.11.006. Epub 2021 Nov 16.

Abstract

Identifying the different influences of symptoms in dynamic psychopathology models may hold promise for increasing treatment efficacy in clinical applications. Dynamic psychopathology models study the behavioral patterns of symptom networks, where symptoms mutually enforce each other. Interventions could be tailored to specific symptoms that are most effective at lowering symptom activity or that hinder the further development of psychopathology. Simulating interventions in psychopathology network models fits in a novel tradition where symptom-specific perturbations are used as in silico interventions. Here, we present the NodeIdentifyR algorithm (NIRA) to identify the projected most efficient, symptom-specific intervention target in a network model (i.e., the Ising model). We implemented NIRA in a freely available R package. The technique studies the projected effects of symptom-specific interventions by simulating data while symptom parameters (i.e., thresholds) are systematically altered. The projected effect of these interventions is defined in terms of the expected change in overall symptom activity across simulations. With this algorithm, it is possible to study (1) whether symptoms differ in their projected influence on the behavior of the symptom network and, if so, (2) which symptom has the largest projected effect in lowering or increasing overall symptom activation. As an illustration, we apply the algorithm to an empirical dataset containing Post-Traumatic Stress Disorder symptom assessments of participants who experienced the Wenchuan earthquake in 2008. The most important limitations of the method are discussed, as well as recommendations for future research, such as shifting towards modeling individual processes to validate these types of simulation-based intervention methods.

摘要

识别动态心理病理学模型中症状的不同影响可能有助于提高临床应用中的治疗效果。动态心理病理学模型研究症状网络的行为模式,其中症状相互促进。干预措施可以针对特定的症状进行定制,这些症状在降低症状活动或阻碍心理病理进一步发展方面最有效。在心理病理网络模型中模拟干预措施符合一种新的传统,即使用特定于症状的扰动作为计算机干预措施。在这里,我们提出了 NodeIdentifyR 算法(NIRA),以识别网络模型(即 Ising 模型)中预测最有效、特定于症状的干预目标。我们在一个免费提供的 R 包中实现了 NIRA。该技术通过模拟数据来研究特定于症状的干预措施的预测效果,同时系统地改变症状参数(即阈值)。这些干预措施的预测效果是根据模拟过程中整体症状活动的预期变化来定义的。使用该算法,可以研究(1)症状在预测对症状网络行为的影响方面是否存在差异,如果存在,(2)哪个症状在降低或增加整体症状激活方面具有最大的预测效果。作为说明,我们将该算法应用于包含 2008 年汶川地震经历者创伤后应激障碍症状评估的实证数据集。讨论了该方法的最重要限制,并为未来的研究提出了建议,例如转向建模个体过程,以验证这些基于模拟的干预方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验