Suppr超能文献

哥伦比亚主要的精神活性物质消费模式:一种基于深度学习网络的聚类导向嵌入方法。

Leading consumption patterns of psychoactive substances in Colombia: A deep neural network-based clustering-oriented embedding approach.

机构信息

Department of Industrial Engineering, Universidad del Norte, Barranquilla, Colombia.

出版信息

PLoS One. 2023 Aug 18;18(8):e0290098. doi: 10.1371/journal.pone.0290098. eCollection 2023.

Abstract

The number of health-related incidents caused using illegal and legal psychoactive substances (PAS) has dramatically increased over two decades worldwide. In Colombia, the use of illicit substances has increased up to 10.3%, while the consumption alcohol and tobacco has increased to 84% and 12%, respectively. It is well-known that identifying drug consumption patterns in the general population is essential in reducing overall drug consumption. However, existing approaches do not incorporate Machine Learning and/or Deep Data Mining methods in combination with spatial techniques. To enhance our understanding of mental health issues related to PAS and assist in the development of national policies, here we present a novel Deep Neural Network-based Clustering-oriented Embedding Algorithm that incorporates an autoencoder and spatial techniques. The primary goal of our model is to identify general and spatial patterns of drug consumption and abuse, while also extracting relevant features from the input data and identifying clusters during the learning process. As a test case, we used the largest publicly available database of legal and illegal PAS consumption comprising 49,600 Colombian households. We estimated and geographically represented the prevalence of consumption and/or abuse of both PAS and non-PAS, while achieving statistically significant goodness-of-fit values. Our results indicate that region, sex, housing type, socioeconomic status, age, and variables related to household finances contribute to explaining the patterns of consumption and/or abuse of PAS. Additionally, we identified three distinct patterns of PAS consumption and/or abuse. At the spatial level, these patterns indicate concentrations of drug consumption in specific regions of the country, which are closely related to specific geographic locations and the prevailing social and environmental contexts. These findings can provide valuable insights to facilitate decision-making and develop national policies targeting specific groups given their cultural, geographic, and social conditions.

摘要

在过去的二十年中,全球范围内与健康相关的非法和合法精神活性物质(PAS)使用事件数量急剧增加。在哥伦比亚,非法物质的使用增加了 10.3%,而酒精和烟草的消费分别增加了 84%和 12%。众所周知,确定普通人群中的药物使用模式对于减少整体药物使用至关重要。然而,现有的方法没有将机器学习和/或深度数据挖掘方法与空间技术结合使用。为了更好地了解与 PAS 相关的心理健康问题,并协助制定国家政策,我们在这里提出了一种新的基于深度神经网络的聚类导向嵌入算法,该算法结合了自动编码器和空间技术。我们的模型的主要目标是识别药物使用和滥用的一般和空间模式,同时从输入数据中提取相关特征,并在学习过程中识别聚类。作为一个测试案例,我们使用了最大的公开合法和非法 PAS 使用数据库,其中包含 49600 户哥伦比亚家庭。我们估计并在地理上表示了 PAS 和非 PAS 的消费和/或滥用的流行程度,同时达到了统计学上显著的拟合优度值。我们的结果表明,地区、性别、住房类型、社会经济地位、年龄以及与家庭财务相关的变量有助于解释 PAS 的消费和/或滥用模式。此外,我们还确定了三种不同的 PAS 消费和/或滥用模式。在空间层面上,这些模式表明该国特定地区存在药物消费集中的情况,这与特定的地理位置以及当前的社会和环境背景密切相关。这些发现可以为决策提供有价值的见解,并根据特定群体的文化、地理和社会条件制定国家政策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffdb/10438020/41a6975b776a/pone.0290098.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验